CENTRAL FLORIDA EXPRESSWAY AUTHORITY

Final Location Hydraulics Report June 2019

Lake/Orange County Connector (US 27 to SR 429) Feasibility/Project Development & Environment Study CFX Project No. 599-225

PROFESSIONAL ENGINEER CERTIFICATE

I hereby certify that I am a registered professional engineer in the State of Florida practicing engineering with Metric Engineering, Inc. and I have reviewed or approved the evaluation, findings, opinions and conclusions as reported for:

PROJECT:	Lake/Orange County Connector PD&E Study
FINANCIAL PROJECT NUMBER:	CFX-Project No. 599-225
LOCATION:	Lake and Orange Counties
CLIENT:	Central Florida Expressway Authority

This Location Hydraulics Report (LHR) provides the results of a summary of data collection efforts, and limited calculations for the proposed cross drains and floodplain evaluations prepared for the conceptual analyses for the Project Development and Environment Study for the Lake/Orange County Connector project. I acknowledge that the procedures and references used to develop the results contained in this report are standard to the professional practice of hydrologic analysis and hydraulic engineering as applied through professional judgment and experience. This document is for planning purposes only and is not to replace any effort required for the final design.

Florida Registered Engineer: Name: Mark Scott, P.E.

Registration Number: FL # 70948

Signature:

Date:

TABLE OF CONTENTS

E	XECU	TIVE SUMMARY	L
	1.0		3
	2.0	CROSS DRAIN ANALYSIS METHODOLOGY AND DESIGN CRITERIA	5
	2.1	Contributing Flow Determination	5
	2.2	Floodplains/Floodways Criteria	õ
	2.3	Culvert Design Criteria	7
	2.4	Culvert Sizing	3
	3.0	EXISTING CONDITIONS10)
	3.1	Soil Data10	כ
	3.2	Land Use	כ
	3.3	Existing Cross Drains11	L
	4.0	PROPOSED CONDITIONS12	2
	4.1	Proposed Cross Drains	2
	4.2	Floodplain Impacts23	3
	4.3	Project Classification23	3
	4.4	Flooding History and Maintenance Concern24	1
	5.0	CONCLUSION	5

LIST OF FIGURES

Figure	Page Number
Figure 1-1 – Project Location	2
Figure 2-2 – Preferred Alternative	4

LIST OF TABLES

Table Page Number
Table-1 – Storm Frequency Criteria 7
Table-2 – USDA NRCS Soil Survey Information 10
Table-3 – Existing U.S. 27 Cross Drain General Information11
Table-4 – Proposed Lake/Orange County Connector Cross Drain General
Information 13
Table-5 – Flood Data Summary Table 14
Table-6 – Summary of Proposed Lake/Orange County Connector Cross Drains 15

APPENDICES

Appendix A Cross Drain Exhibits

Appendix B FEMA Flood Insurance Rate Map

Appendix C USDA Soil Survey

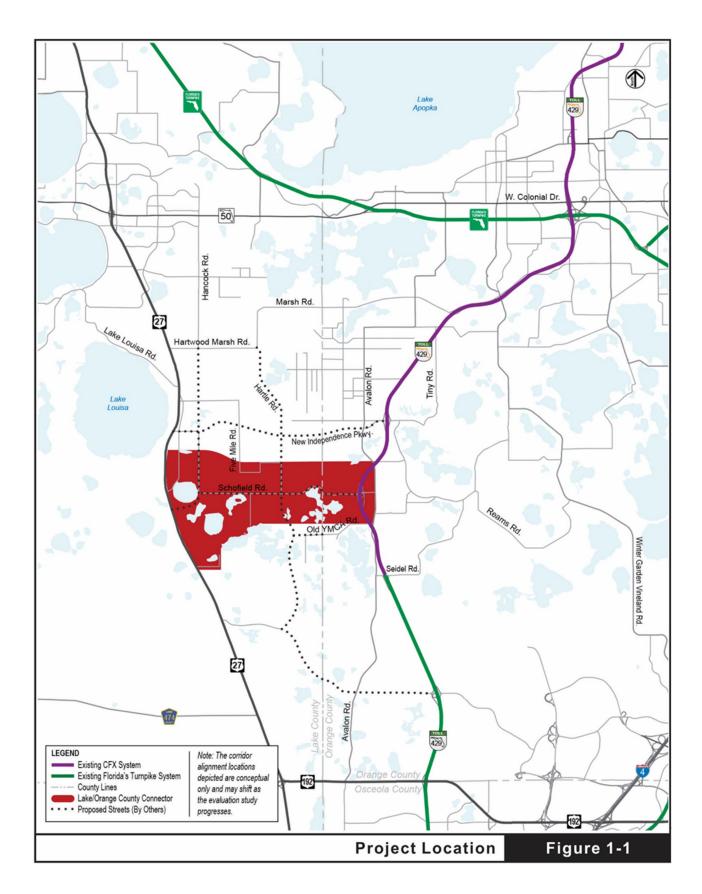
Appendix D Cross Drain Rational Method Analysis

Appendix E HY-8 Analysis

Appendix F ICPR Analysis

- **Appendix G Existing Permits**
- **Appendix H Proposed Typical Sections**

Appendix I Time of Concentration


EXECUTIVE SUMMARY

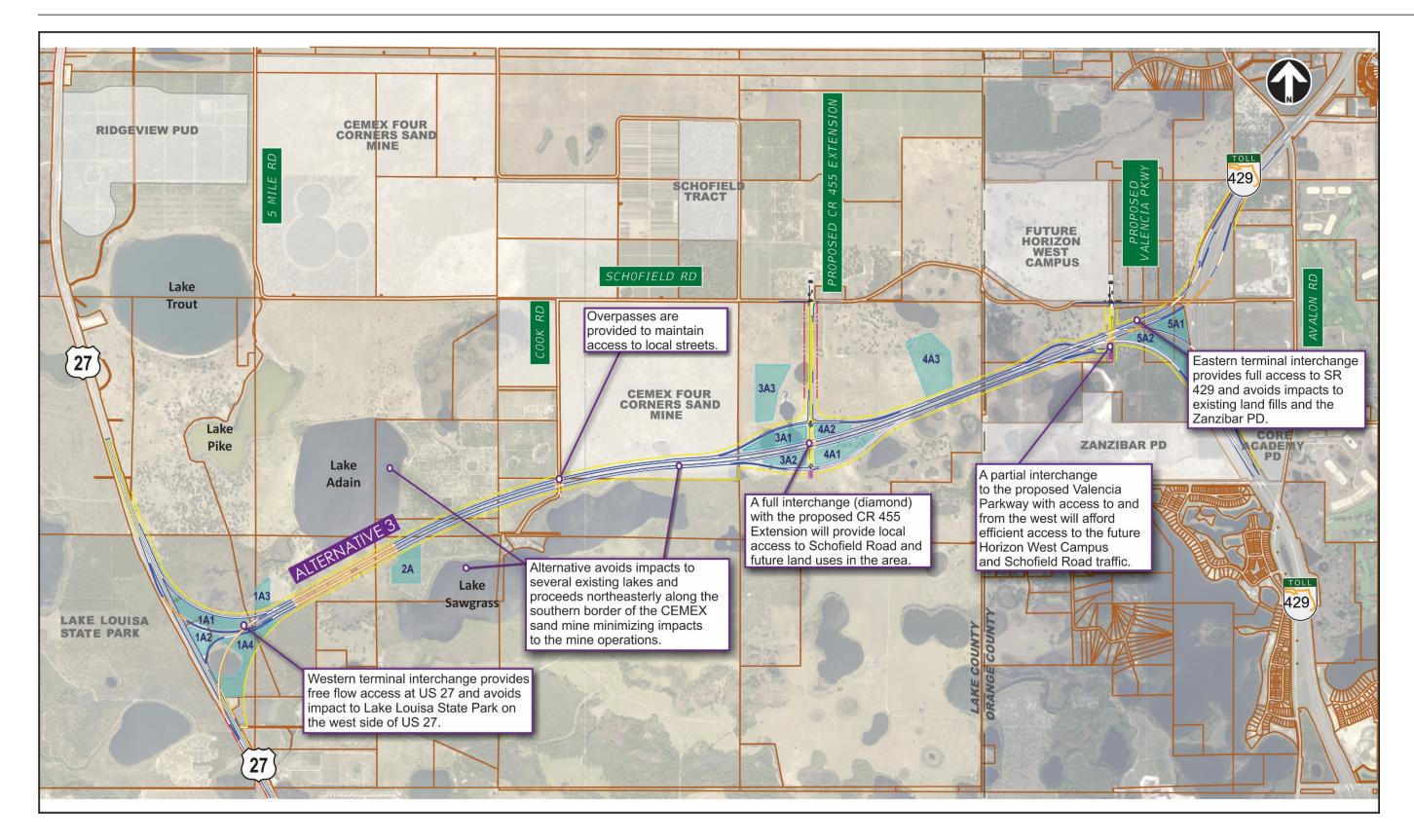
The purpose of the Lake/Orange County Connector Feasibility/Project Development and Environment (PD&E) Study is to develop a proposed improvement strategy that is technically sound, environmentally sensitive and publicly acceptable. Emphasis has been placed on the development, evaluation and documentation of detailed engineering and environmental studies including data collection, conceptual design, environmental analyses, project documentation and the preparation of a Preliminary Engineering Report. This Location Hydraulics Report (LHR) has been prepared in support of the PD&E effort.

The proposed improvements include the construction of a limited-access facility that provides a new east-west connection from US 27 in south Lake County to SR 429 in west Orange County. (see **Figure 1-1** on the following page)

The purpose of this LHR is to identify and discuss the proposed cross drains throughout the project corridor, as well as to analyze the effects of extending/shortening the existing cross drains. There are twelve new cross drains identified for this project. The cross drains were sized appropriately using HY-8 program to minimize the impacts to flood elevations and floodplain limits, and to ensure that there would be no overtopping of the roadway due to the design storm event. All analysis will be in accordance with PD&E manual, part 2, section 13.2.2.1 thru 13.2.2.5 (begins page 978).

Modifications to existing structures included in this project (consisting of extending cross drains along US 27) will result in an insignificant change in their capacity to carry floodwater. These modifications will not cause increases in flood heights and flood limits, thus will not result in any significant adverse impacts on the natural and beneficial floodplain values or any significant change in flood risks or damage. There will be no significant change in the potential for interruption or termination of emergency service or emergency evacuation routes as the result of modifications to existing drainage structures. Throughout the corridor, along the mainline alignment, cross drains have been designed to maintain hydraulic connectivity in areas in which the proposed roadway severs the floodplain. Therefore, it has been determined that this encroachment is not

significant. In addition, the PGL has been set to maintain one full lane above the adjacent 100-year floodplain in each direction to provide continuous service during storm events.


1.0 INTRODUCTION

The purpose of this project is to provide a connection between south Lake County and west Orange County in order to accommodate the growth and influx of traffic within the region. The limits of this study generally extend from US 27 just south of Schofield Road and East to SR 429. The proposed Typical Sections are provided in **Appendix H**. The Lake/Orange County Connector will be a limited-access facility that allows for a more efficient way to travel between the two counties.

The Central Florida Expressway Authority (CFX) is presently evaluating the feasibility to provide a Lake/Orange County Connector, a strategic transportation investment aimed at supporting existing and future growth in south Lake and west Orange Counties. The primary objectives of this transportation improvement project are to expand regional system linkage and connectivity in Lake and Orange counties; enhance mobility between US 27 and SR 429; and accommodate the expected increase in traffic due to population and employment growth within the study area, while being consistent with accepted local and regional plans. As such, the proposed improvements include the construction of a limited-access facility that provides a new east-west connection from US 27 in south Lake County to SR 429 in west Orange County. The proposed five-mile corridor will also have intersections at Lake County's proposed CR 455 extension and a proposed connection to the extension of Valencia Parkway.

A multiphase alternative development evaluation and selection process was employed to properly assess all alternatives considered for the proposed Lake / Orange County Connector. After the comprehensive evaluation process, one alternative was selected as being the most effective option. This preferred alternative is illustrated on **Figure 2-2**.

This report discusses and analyzes proposed cross drains throughout the project corridor, as well as the extension of existing cross drains due to the widening and alteration of US 27. The proposed corridor impacts wetlands and floodplains; therefore, the placement of cross drains is crucial to maintain the natural flow. A description of each proposed cross drain is located in **Section 4.1** of this report. Exhibits showing proposed cross drains are in **Appendix A**.

Figure 2-2 Preferred Alternative

2.0 CROSS DRAIN ANALYSIS METHODOLOGY AND DESIGN CRITERIA

Due to the proposed realignment and widening of US 27 as part of the preferred alternative, three existing cross drains (cross drains 2-4) will have to be relocated to lie under the new roadway footprint and analyzed in order to maintain the connectivity of the flow without causing any significant change in the flood elevations. These cross drains were analyzed using the existing data from St. John's River Water Management District (SJRWMD) permit #90260-2 (See Appendix G). The proposed project alignment is a new corridor. Cross drains 4A through 10 were located strategically along the proposed Lake/Orange County Connector to maintain flow connectivity within the impacted wetlands and floodplains. There is a total of twelve cross drains proposed along the new corridor and ramps. In accordance with the Florida Department of Transportation (FDOT) Drainage Design Guide for designing culverts, the Rational Method was used to conduct hydrologic analysis for cross drain 7. The Rational Method was used because the delineated drainage areas for each cross drain were less than 600 acres. Due to the varying elevations throughout the project and the probability that runoff would flow from one basin to another, it was necessary to model the remainder of the cross drains (cross drains 4, 4A, 4B, 4C, 5, 6, 6A, 6B, 6C, 8, 9, and 10) in ICPR in order to get the flow rates for each of these cross drains. Drainage areas were delineated by using a one foot LiDAR contour map.

2.1 Contributing Flow Determination

Rational Method

- The Rational Method procedures require calculating a peak basin flow rate from the basin characteristics.
- The composite runoff coefficient was calculated based on the percentage of land use for residential, commercial, flat lawns, and woods/wetland areas per the FDOT Hydrology Handbook.
- Time of concentration was calculated using the TR-55 Method.
- The intensity for each storm event was calculated from the FDOT Intensity-

Duration-Frequency (IDF) curve for Zone 7.

- The composite coefficient is designed for a storm period of 10 years. Storm frequency factors were used to adjust the composite runoff coefficient for 25, 50, and 100-year storm events.
- Frequency Factor for Return Period 500 year runoff coefficient is not provided in the FDOT Hydrology Handbook; therefore, a log-log graph was created in order to extrapolate the peak discharge.
- The Rational Method should only be used for areas up to 600 acres.

ICPR Method

- For each cross drain, a basin with a stage/area node was modeled based on the general boundaries formed by the contour elevations and ponds.
- A stage/area node was set downstream for each respective cross drain.
- Earthen weirs were modeled for the ridges which form the links between the depressional areas.
- Pipes were modeled as the cross drain that links the upstream depressional area or pond with the downstream depressional area or pond.
- Time of concentration for each basin was calculated using the TR-55 Method.
- An average time of concentration out of all of the basins in the model was used to get the rainfall intensity off of the FDOT IDF curve for Zone 7 for the 10, 25, 50, and 100-year storms. The rainfall amount used for each of the respective storms was based on a 1-hour duration.
- The resulting maximum inflow to each of the cross drain links were used as the design flow rates for HY-8 analysis.

2.2 Floodplains/Floodways Criteria

The following criteria was drawn from the 2019 FDOT Drainage Manual and SRJWMD Permit Information Manual. Floodplain information for this project is based on the Federal Emergency Management Agency's (FEMA) flood maps (**See Appendix B**).

• The proposed project may not cause a net reduction in flood storage within the 10-

year floodplain.

- Structures shall cause no more than one-tenth (0.1) of a flood increase in the 100year flood elevation 500-feet upstream and no more than one foot of a flood increase in the 100-year flood elevation directly upstream.
- Proposed construction shall not cause a reduction in flood conveyance capabilities.
- Best Management Practices (BMP's) shall be employed to minimize velocity to avoid undue erosion.
- The design of encroachments shall be consistent with standards established by FEMA.

2.3 Culvert Design Criteria

The following criteria was drawn from the 2019 FDOT Drainage Manual. The following table provides the required storm events to be analyzed for each cross drain per the FDOT Drainage Manual and the FDOT Drainage Design Guide.

Table-1 Storm Frequency Criteria

Storm Event Frequency	Definitions
50-Year	Design Flood Event
100-Year	Base Flood Event
500-Year	Greatest Flood Event

- All cross drains, if applicable, shall be designed to have sufficient hydraulic capacity to convey the 50-year (Design Frequency) storm event. In accordance with the FDOT Drainage Manual, mainline interstate and high use road culverts should be designed for a frequency of 50 years. All culverts shall be analyzed for the base flood (100 year).
- Backwater shall not significantly change land use values unless flood rights are purchased.
- The headwater for design frequency conditions shall be kept at or below the travel

lanes.

- The highest tailwater elevation, which can reasonably be expected to occur coincident with the design storm event, shall be used (typically, crown of pipe is used at the outlet).
- The minimum culvert size is 18" or its equivalent size.
- The design of all cross culverts shall comply with the guidelines set forth in the FDOT Drainage Manual, Chapter 4.

The criteria listed above was collected from the following applicable sources:

- FDOT Drainage Design Guide Culvert Design (January 2019)
- FDOT Drainage Manual (January 2019)
- FHWA Code of Federal Regulation 23 CFR 650A
- SJRWMD Management and Storage of Surface Waters (MSSW) Permit Information Manual (October 2013)

2.4 Culvert Sizing

All proposed cross drains were sized for a 50-year storm event. The calculated 100-year backwater stage elevation from the HY-8 analysis was compared with the existing 100-year flood stage. Proposed culvert sizes were initially set at 18" and used to perform an HY-8 analysis. While performing the overtopping analysis, the cross drains were appropriately sized to conform with the floodplain criteria in **Section 2.2** of this report.

Assumptions

- The pipe length was measured based on a 36' clear zone requirement from the edge of pavement for each cross drain.
- The change in flow line elevation from upstream to downstream was based on the contour elevations at the ends of the cross drain length.
- Manning's "n" value of 0.012 was used.

HY-8

- The culvert size was set at 18" for the initial HY-8 analysis.
- The culvert size was adjusted to maintain backwater stage elevations below the 100-year stage elevation.
- The 25-year flow was the minimum flow, 50-year flow was the design flow, and 100-year flow was the maximum flow.
- The crown of the pipe/top of box culvert or floodplain elevation (whichever is greater) or existing US 27 cross drain tailwater elevations were used as the constant tailwater elevations. In cases where cross drains run in succession of one another, the tailwater for the upstream cross drain was input as a rating curve based on the stage of the downstream node for each storm event in the ICPR analysis.

3.0 EXISTING CONDITIONS

3.1 Soil Data

The National Resources Conservation Service (NRCS) Soil Survey of Orange County published by the United States Department of Agriculture (USDA) has been reviewed for the project. The soil survey map and soil types found throughout the proposed corridor are shown in the complete NRCS USDA Soil Survey located in **Appendix C**. In general, the surficial soils consist of fine sands, muck and poorly drained soil. The groundwater ranges from 0' to greater than 6' below the existing ground. Refer to **Table-2** below for the most prevalent soils within the project area.

Soil No.	USDA Soil Name	Depth to Water Table (inches)	Hydrologic Soil Group					
	Lake County Classification							
4	Anclote and Myakka soils	0	A/D					
8	Candler Sand, 0 to 5% slopes	>80	А					
9	Candler Sand, 5 to 12% slopes	>80	А					
20	Immokalee sand	6 to 18	B/D					
28	Myakka-Myakka, wet, sands, 0 to 2% slopes	6 to 18	A/D					
40	Placid and Myakka sands, depressional	0	A/D					
45	Tavares sand, 0 to 5% slopes	42 to 72	А					
	Orange County Class	ification						
3	Basinger fine sand, frequently ponded, 0 to 1% slopes	0 to 6	A/D					
4	Candler Fine Sand, 0 to 5% slopes	>80	А					
5	Candler Fine Sand, 5 to 12% slopes	>80	А					

Table-2 USDA NRCS Soil Survey Information

3.2 Land Use

The existing land use along the proposed Lake/Orange County Connector consists mostly of pasture/range, woods, grassed area, and water bodies.

3.3 Existing Cross Drains

There are four cross drains along US 27 that are within the project limits. Three of them will be impacted due to the realignment and widening of the existing roadway. CD-1 will remain unaffected by the changes. Refer to **Table-3** for existing US 27 cross drain information. The culvert size and tailwater elevations were obtained from the existing permit #90260-2. Data from the existing permit was input into HY-8 and analyzed for the existing conditions design elevations. Refer to **Appendix G** for the existing conditions cross drain analysis that the data was pulled from.

Cross Drain ID	Pipe Description	Tailwater EL (ft)	Action
CD-1	2-10'x4' CBC	111.6	None/Unaffected
CD-2	4'x3' CBC	109.82	Extended 25'
CD-3	30" RCP	107.74	Extended 5'
CD-4	5'x2' CBC	105.43	Extended 15'

Table-3 Existing US 27 Cross Drain General Information

All existing cross drains along SR 429 will remain unaffected by the proposed changes. There is an existing ditch outfall in the corner north of Schofield Road and west of SR 429 that will be cut off from receiving runoff from the ditch due to the proposed eastbound on-ramp for the Lake/Orange County Connector. While this does not give reason to provide an additional cross drain, it will require a connection to be provided during the design phase that includes collecting the runoff from the ditch on the north of the ramp via a ditch bottom inlet and conveying it to the downstream outfall through a closed storm sewer system. Refer to **Appendix G** for the drainage map and plan view of the existing ditch outfall from FDEP permit number ERP48-205102-002-EI, as well as a diagram showing the proposed ramp and how it will affect the ditch.

4.0 PROPOSED CONDITIONS

The project corridor will cross through floodplains, wetlands, wooded areas, and agricultural land. Cross drains were placed to allow runoff to continue to flow in its natural path and to reduce any impacts due to the proposed Lake/Orange County Connector. **Appendix A** contains exhibits showing locations and basin areas for each cross drain.

4.1 **Proposed Cross Drains**

Twelve cross drain locations were selected once the alignment and the most effective interchange layouts were identified for the Lake Orange Connector. The proposed cross drain locations were chosen based on the natural flow of the land from the surrounding floodplains and wetlands. The proposed Lake/Orange County Connector will have floodplain impacts along most of the corridor. These floodplain impacts will be mitigated by routing this volume to the project's proposed storm water management facilities and roadside swales. Refer to **Table-4** for calculated culvert size, flow direction, and floodplain status for each cross drain. Following the table is a description of each cross drain, including the three existing cross drains to be extended, and the results of the analysis. Refer to **Table-5** for flood data and **Table-6** for the 50-year design conditions. Refer to **Appendix E** for the HY-8 analyses.

Cross Drain ID	Pipe Description	Flow Direction	Receiving Water Body	Within Floodplain (Yes/No)
CD-4A	18" RCP	South	Unnamed wetland system	Yes (Zone A)
CD-4B	18" RCP	North	Pond 1A1	Yes (Zone A)
CD-4C	18" RCP	East	Unnamed wetland system	Yes (Zone A)
CD-5	18" RCP	South	Unnamed wetland system	Yes (Zone AE)
CD-6	42" RCP	West	Unnamed surface water	Yes (Zone A)
CD-6A	24" RCP	South	Pond 3A1	Yes (Zone AE)
CD-6B	30" RCP	South	Pond 3A2	Yes (Zone AE)
CD-6C	24" RCP	South	Unnamed wetland system	Yes (Zone AE)
CD-7	30" RCP	West	Unnamed surface water	Yes (Zone A)
CD-8	18" RCP	South	Unnamed wetland system	Yes (Zone AE)
CD-9	18" RCP	South	Unnamed wetland system flowing to Lake Needham	Yes (Zone AE)
CD-10	24" RCP	West	Unnamed wetland system flowing to Lake Needham	No

Table-4 Proposed Lake/Orange County Connector Cross Drain GeneralInformation

Struct.	Proposed Size		Design Flood 50-Yr Storm Event		Base Flood 100-Yr Storm Event			*Overtopping Flood			
Number	Size	Length (ft)	Discharge (cfs)	Exist. Stage (ft)	Prop. Stage (ft)	Discharge (cfs)	Exist. Stage (ft)	Prop. Stage (ft)	Discharge (cfs)	Stage (ft)	Storm Frequency
CD-2	4'x3x CBC	190	90.00	112.74	112.83	100.80	113.35	113.48	129.28	115.29	257 Yr
CD-3	30" RCP	195	36.80	111.36	111.44	41.20	112.10	112.19	64.80	117.00	>500 Yr
CD-4	5'x2' CBC	192	48.42	107.89	107.95	54.62	108.49	108.48	86.07	110.37	>500 Yr
CD-4A	18" RCP	100	3.31	-	106.73	4.15	-	106.89	28.74	119.50	>500 Yr
CD-4B	18" RCP	150	2.04	-	107.02	2.35	-	107.30	40.74	138.70	>500 Yr
CD-4C	18" RCP	95	5.94	-	106.94	7.36	-	107.19	37.23	125.95	>500 Yr
CD-5	18" RCP	270	2.56	-	106.45	3.10	-	106.47	38.10	116.63	>500 Yr
CD-6	42" RCP	160	107.05	-	110.22	113.99	-	110.89	119.83	111.48	170 Yr
CD-6A	24" RCP	150	3.90	-	106.79	5.92	-	107.18	24.34	109.88	>500 Yr
CD-6B	30" RCP	350	12.60	-	107.02	14.32	-	107.37	105.31	137.27	>500 Yr
CD-6C	24" RCP	130	22.72	-	107.23	24.82	-	107.51	24.00	107.50	77 Yr
CD-7	30" RCP	160	24.95	-	112.10	27.84	-	112.37	31.51	112.76	155 Yr
CD-8	18" RCP	290	3.25	-	106.31	3.70	-	106.41	12.88	110.93	>500 Yr
CD-9	18" RCP	340	3.15	-	106.33	3.44	-	106.40	23.75	124.94	>500 Yr
CD-10	24" RCP	165	28.02	-	116.64	28.02	-	116.64	32.54	116.91	>500 Yr

Table-5 Flood Data Summary Table

The flows and tailwater elevations used in this report are based on preliminary information. The culvert design shall be reviewed for flows and tailwater elevations during the final design.

*Overtopping frequency calculated based on log(flow) vs log(rainfall frequency) graphs. See **Appendix D** for overtopping frequency estimate calculations.

Cross Drain	HY-8 Cross Drain Size	50-Year Flow (cfs)	Tailwater EL (ft)	Proposed Roadway El (ft)	Backwater Stage Based on HY-8 (ft)
CD-2	4'x3x CBC	90.00	109.82	115.29	112.83
CD-3	30" RCP	36.80	107.74	117.00	111.44
CD-4	5'x2' CBC	48.42	106.95	110.37	107.95
CD-4A	18" RCP	3.31	105.42	119.50	106.73
CD-4B	18" RCP	2.04	106.95	138.70	107.02
CD-4C	18" RCP	5.94	105.43	125.95	106.94
CD-5	18" RCP	2.56	106.40	116.63	106.45
CD-6	42" RCP	107.05	105.50	111.48	110.22
CD-6A	24" RCP	3.90	106.72	109.88	106.79
CD-6B	30" RCP	12.60	106.42	137.27	107.02
CD-6C	24" RCP	22.72	104.90	107.50	107.23
CD-7	30" RCP	24.95	116.50	112.76	112.10
CD-8	18" RCP	3.25	106	110.93	106.31
CD-9	18" RCP	3.15	106	124.94	106.33
CD-10	24" RCP	28.02	115.50	116.91	116.64

Table-6 Summary of Proposed Lake/Orange County Connector Cross Drains (HY-8 Analysis)

* The flows and tailwater elevations used in this report are based on preliminary information. The culvert design will need to be reviewed for flows and tailwater elevations during the final design.

CD-2

CD-2 is an existing cross drain located along US 27. It connects the existing floodplain with Keene Lake on the west side of the road. The tailwater, flow rates, pipe information, and roadway information all come from the existing permit #90260-2 cross drain analysis. See **Appendix G** for excerpts from the permit. A pre-development and post-development analysis of this cross drain were performed in HY-8 to compare the 50-year design stage and the 100-year floodplain stage. The existing 165' cross drain will be extended to 190' in the post-development. The 50-year design stage increased by 0.09 ft due to the extension, and the 100-year stage also increased by 0.13 ft.

CD-3

CD-3 is an existing cross drain located along US 27. It connects the depression on the west side of the road with the wetland and floodplain on the east side that leads to Square Lake. The tailwater, flow rates, pipe information, and roadway information all come from the existing permit #90260-2 cross drain analysis. See **Appendix G** for excerpts from the permit. A pre-development and post-development analysis of this cross drain were performed in HY-8 to compare the 50-year design stage and the 100-year floodplain stage. The existing 190' cross drain will be extended on the East and shortened on the West to become 195' in the post-development. The 50-year design stage increased by 0.08 ft due to the extension, and the 100-year stage also increased by 0.09 ft.

CD-4

CD-4 is an existing cross drain located along US 27. It provides connectivity for the floodplains and wetlands on the east and west side of US 27. A pre-development and post-development analysis of this cross drain were performed in HY-8 to compare the 50-year design stage and the 100-year floodplain stage. The tailwater, flow rates, pipe information, and roadway information all come from the existing permit #90260-2 cross drain analysis for the pre-development analysis. See **Appendix G** for excerpts from the permit. The existing 177' cross drain will be extended on the East and shortened on the West to become 192' in the post-development. CD-4 will outfall into proposed Pond 1A1 that is used for floodplain compensation, which then discharges through CD-4C to the

downstream floodplain. Since CD-4 will be a part of a series of depressional areas and ponds connected by cross drains in the post-development analysis, CD-4 was first modeled in ICPR (along with CD-4A, CD-4B, and CD-4C) to get accurate flow rates for HY-8. Since CD-4 is an existing cross drain, a pre-development ICPR model of CD-4 was created to ensure that the basin used to design CD-4 would accurately depict reality in the post-development. A 25-year storm was modeled for the pre-development conditions and the flow rate was checked with the permitted 25-year flow rate. Then, this model was added to in the post-development conditions by including the proposed ponds and additional cross drains. The flow rates obtained from this ICPR model for CD-4 were used as the flow inputs for the HY-8 analysis. The 25, 50, and 100-year flow rates of 43.71, 48.42, and 54.62 cfs, respectively, were calculated. The elevations from Pond 1A1 based on the ICPR results for each storm were used for the tailwater rating curve in HY-8. Please see **Appendix F** for the ICPR analyses and **Section 2.1** for an explanation on this methodology. The 50-year design stage increased by 0.06 ft due to the proposed modifications and extension, and the 100-year stage decreased by 0.01 ft.

CD-4A

CD-4A will provide connectivity between the existing lake that will be in the infield and the proposed floodplain compensation Pond 1A2. This will allow the lake to continue to be a part of the floodplain without any disruption. CD-4A was modeled in ICPR along with CD-4, CD-4B, and CD-4C to find the 25, 50, and 100-year flow rates of 2.66, 3.31, and 4.15 cfs, respectively. Please see **Appendix F** for the ICPR analysis and **Section 2.1** for an explanation on this methodology. The elevations from the lake based on the ICPR results for each storm were used for the tailwater rating curve. The calculated backwater stage of 106.73 ft for the 50-year design flow from HY-8 analysis is less than the proposed roadway elevation of 119.50 ft. The proposed cross drain size from the HY-8 analysis is an 18" pipe.

CD-4B

CD-4B will provide connectivity between the Pond 1A2 and Pond 1A1. This will allow these floodplain compensation ponds to continue to be a part of the floodplain without

any disruption. CD-4B was modeled in ICPR along with CD-4, CD-4A, and CD-4C to find the 25, 50, and 100-year flow rates of 1.80, 2.04, and 2.35 cfs, respectively. Please see **Appendix F** for the ICPR analysis and **Section 2.1** for an explanation on this methodology. The elevations from Pond 1A1 based on the ICPR results for each storm were used for the tailwater rating curve. The calculated backwater stage of 107.02 ft for the 50-year design flow from HY-8 analysis is less than the proposed roadway elevation of 138.70 ft. The proposed cross drain size from the HY-8 analysis is an 18" pipe.

CD-4C

CD-4C will provide connectivity between Pond 1A1 and the downstream floodplain. This will allow the pond to continue to be a part of the floodplain without any disruption. CD-4C was modeled in ICPR along with CD-4, CD-4A, and CD-4B to find the 25, 50, and 100-year flow rates of 4.89, 5.94, and 7.36 cfs, respectively. Please see **Appendix F** for the ICPR analysis and **Section 2.1** for an explanation on this methodology. The tailwater elevation from existing SJRWMD permit #90260-2 for CD-4 was used as the tailwater for CD-4C, since it is now the downstream cross drain in the series. The calculated backwater stage of 106.94 ft for the 50-year design flow from HY-8 analysis is less than the proposed roadway elevation of 125.95 ft. The proposed cross drain size from the HY-8 analysis is an 18" pipe.

CD-5

CD-5 is a proposed cross drain that will cross the Lake/Orange County Connector mainline. CD-5 is proposed to maintain connectivity between a 57.2 acre depressional area located just north of the mainline, and the remainder of the floodplain to the south. This basin area contains within it 14.04 acres (Basin G1) which drains into a small depression first, before overtopping and flowing into the second depression (Basin G2) and rising until it flows into CD-5. Because of this, CD-5 was modeled in ICPR to find the 25, 50, and 100-year flow rates of 0.07, 2.56, and 3.10 cfs, respectively. Please see **Appendix F** for the ICPR analysis and **Section 2.1** for an explanation on this methodology. The elevation from floodplain (106.4') was used as the tailwater. The calculated backwater stage of 106.45 ft for the 50-year design flow from HY-8 analysis is

less than the proposed roadway elevation of 116.63 ft. The proposed cross drain size from the HY-8 analysis is an 18" pipe.

CD-6

CD-6 will be located on the proposed CR 455. It will convey runoff from a basin area of 42.4 acres on the east side of CR 455 to a depression located in a floodplain on the west. This basin area contains within it 8.1 acres (Basin E) which drains into a small depression first, before overtopping and flowing across a steep downhill slope into CD-6 (Basin F) and out to the floodplain on the west of CR 455. Since this floodplain is being bisected by the proposed Lake/Orange County Connector and ramps, three more cross drains were designed in succession to allow the runoff to continue flowing to the south. Because of this, CD-6 was modeled in ICPR along with CD-6A, CD-6B, and CD-6C to find the 25, 50, and 100-year flow rates of 99.48, 107.05, and 113.99 cfs, respectively. Please see **Appendix F** for the ICPR analysis and **Section 2.1** for an explanation on this methodology. The elevation from the crown of the pipe was used as the tailwater. The calculated backwater stage of 110.22 ft for the 50-year design flow from HY-8 analysis is less than the proposed roadway elevation of 111.48 ft. The proposed cross drain size from the HY-8 analysis is a 42" pipe.

CD-6A

CD-6A will be located downstream of CD-6. It will convey runoff from a basin area of 41.8 acres on the north side of Ramp 6 and west side of CR 455 to a proposed pond (Pond 3A1) in the infield of the Lake/Orange County Connector. CD-6A was modeled in ICPR along with CD-6, CD-6B, and CD-6C to find the 25, 50, and 100-year flow rates of 2.14, 3.90, and 5.92 cfs, respectively. Please see **Appendix F** for the ICPR analysis and **Section 2.1** for an explanation on this methodology. The elevations from Pond 3A1 based on the ICPR results for each storm were used for the tailwater rating curve in HY-8. The calculated backwater stage of 106.79 ft for the 50-year design flow from HY-8 analysis is less than the proposed pond berm of 109.88 ft. The proposed cross drain size from the HY-8 analysis is a 24" pipe.

CD-6B

CD-6B will be located downstream of CD-6A. It will connect proposed Pond 3A1 in the northern infield of the Lake/Orange County Connector to proposed Pond 3A2 in the southern infield. Pond 3A1 is also connected to floodplain compensation Pond 4C1 by an equalized pipe. The basin for Pond 3A1 was delineated to only include the portion of Basin 4 (See Basin Exhibits in the Pond Siting Report) that could reasonably be expected to be conveyed to Pond 3A1 by the proposed ditches and storm sewer systems. This includes 50 acres of Basin 4. A calculation was done in the Pond Siting Report to confirm that the runoff draining to Pond 3A1 would be more than enough to provide the required treatment and attenuation for the entire basin. Pond 3A1 is designed to hold all required treatment and attenuation volume below the elevation of 105'. Therefore, CD-6B and the equalizer pipe were placed at elevation 105 so that any additional runoff from Pond 3A1 and Pond 4C1 would overflow into Pond 3A2 to the south, allowing for continuity of the floodplain flow. CD-6B was modeled in ICPR along with CD-6, CD-6A, and CD-6C to find the 25, 50, and 100-year flow rates of 9.53, 12.60, and 14.32 cfs, respectively. Please see Appendix F for the ICPR analysis and Section 2.1 for an explanation on this methodology. The elevations from Pond 3A2 based on the ICPR results for each storm were used for the tailwater rating curve in HY-8. The calculated backwater stage of 107.02 ft for the 50-year design flow from HY-8 analysis is less than the proposed roadway elevation of 137.27 ft. The proposed cross drain size from the HY-8 analysis is a 30" pipe.

CD-6C

CD-6C will be located downstream of CD-6B. It will connect proposed Pond 3A2 in the southern infield of the Lake/Orange County Connector to the floodplain to the south. Pond 3A2 is designed as a floodplain compensation pond. Therefore, CD-6C was placed at the bottom of the pond so that any runoff would flow directly into the floodplain to the south. CD-6C was modeled in ICPR along with CD-6, CD-6A, and CD-6B to find the 25, 50, and 100-year flow rates of 20.08, 22.72, and 24.82 cfs, respectively. Please see **Appendix F** for the ICPR analysis and **Section 2.1** for an explanation on this methodology. The elevation from the crown of the pipe was used as the tailwater. The calculated backwater stage of 107.23 ft for the 50-year design flow from HY-8 analysis is less than the proposed

pond berm elevation of 107.50 ft. The proposed cross drain size from the HY-8 analysis is a 24" pipe.

CD-7

CD-7 will convey runoff from 12.4 acres of land that flows from the east side of the proposed CR 455 to a depression on the west side. A time of concentration of 21.7 minutes was calculated for this basin area using the TR-55 method. The 25, 50, and 100-year flow rates of 20.91, 24.95, and 27.84 cfs, respectively, were calculated using the Rational Method. In the absence of substantial downstream storage, the elevation from the crown of the pipe was used as the tailwater. The calculated backwater stage of 112.10 ft for the 50-year design flow from HY-8 analysis is less than the proposed roadway elevation of 112.76 ft. The proposed cross drain size from the HY-8 analysis is a 30" pipe.

CD-8

CD-8 will be located along the mainline of the Lake/Orange County Connector. The Lake/Orange County Connector transects a large Floodplain Zone AE with an elevation of 106 ft. CD-8, along with CD-9, will provide connectivity between the northern and southern limits of this floodplain that Lake/Orange County Connector will be cutting through. The floodplain in which these cross drains are located within contains many different depressions and ridges (Appendix A). For this reason, the floodplain was divided into three major areas (Basin A, B, and C) that were modeled in ICPR to obtain the design flow rates draining into each of the cross drain locations that would be used in the HY-8 analysis. Please see Appendix F for the ICPR analysis and Section 2.1 for an explanation on this methodology. For CD-8, the 25, 50, and 100-year flow rates are 2.59, 3.25, and 3.70 cfs, respectively. The elevation of the floodplain was used as the tailwater in the HY-8 analysis. The calculated backwater stage of 106.31 ft for the 50-year design flow from HY-8 analysis is less than the proposed roadway elevation of 109.22 ft. The calculated backwater stage of 106.41 ft for the 100-year flow from the HY-8 analysis is less than a foot greater than the floodplain elevation of 106 ft. The proposed cross drain size from the HY-8 analysis is an 18" pipe.

CD-9

CD-9 will be located along the mainline of the Lake/Orange County Connector. The Lake/Orange County Connector transects a large Floodplain Zone AE with an elevation of 106 ft. CD-9, along with CD-8, will provide connectivity between the northern and southern limits of this floodplain that Lake/Orange County Connector will be cutting through. The floodplain in which these cross drains are located within contains many different depressions and ridges (Appendix A). For this reason, the floodplain was divided into three major areas (Basin A, B, and C) that were modeled in ICPR to obtain the design flow rates draining into each of the cross drain locations that would be used in the HY-8 analysis. Please see Appendix F for the ICPR analysis and Section 2.1 for an explanation on this methodology. For CD-9, the 25, 50, and 100-year flow rates are 2.71, 3.15, and 3.44 cfs, respectively. The elevation of the floodplain was used as the tailwater in the HY-8 analysis. The calculated backwater stage of 106.33 ft for the 50-year design flow from HY-8 analysis is less than the proposed roadway elevation of 124.94 ft. The calculated backwater stage of 106.40 ft for the 100-year flow from the HY-8 analysis is less than a foot greater than the floodplain elevation of 106 ft. The proposed cross drain size from the HY-8 analysis is an 18" pipe.

CD-10

CD-10 will convey runoff from the land that flows from the east side of the proposed Valencia Road to the existing depression on the west side. The basin area is approximately 6.1 acres. A time of concentration of 37.4 minutes was calculated for this basin area using the TR-55 method. CD-10 was modeled in ICPR along with CD-8 and CD-9, since the downstream depression for CD-10 discharges into the basin for CD-8. The flow rate for the 25, 50, and 100 year storm was 28.02 cfs, due to the pipe flowing at full capacity for all storms. The elevation from the crown of the pipe was used as the tailwater. The calculated backwater stage of 116.64 ft for the 50-year design flow from HY-8 analysis is less than the proposed roadway elevation of 116.91 ft. The proposed cross drain size from the HY-8 analysis is a 24" pipe.

4.2 Floodplain Impacts

The project will impact the 100-year floodplain in three different ways:

- 1) Longitudinal roadway impacts resulting from filling the floodplain areas.
- 2) Impact due to proposed pond locations in floodplain.
- 3) Impact due to proposed cross drains in floodplain.

The longitudinal impact due to the recommended Lake/Orange County Connector alignment cannot be avoided. During the final design phase of the project, every effort should be taken to minimize floodplain impacts. During the design phase, floodplain impacts should be mitigated by routing to proposed stormwater management facilities and roadside swales.

The FEMA's Flood Insurance Rate Map (FIRM) shows that portions of the project lie within the 100-year floodplain areas Zone AE (100 year Base flood elevations are provided) and Zone A (100 year base flood elevations are not provided, areas with 1% change of flooding). FEMA Map No. 12069C0675E and 12095C0375F provide flood information for the project. Floodplain elevations within the corridor range from elevation 106 to 110.4. Floodplain impact will occur throughout the project corridor. Please refer to **Appendix B** for a FEMA Flood Insurance Rate Map.

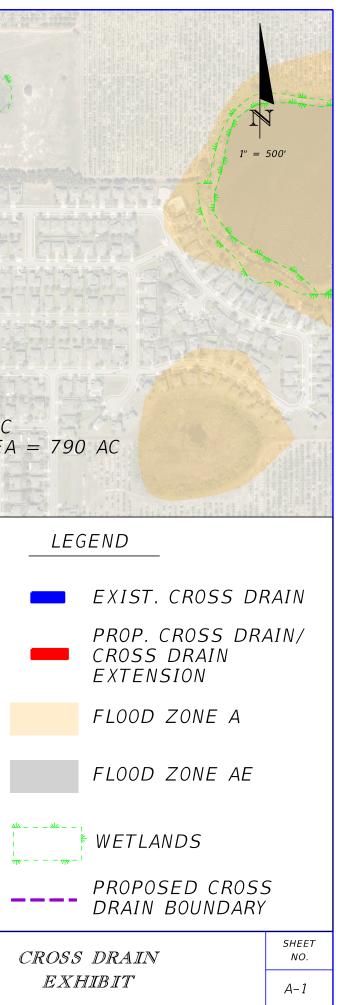
It is determined that the floodplain impacts will all be minimized by including floodplain compensation storage in the design of the proposed ponds. Please refer to **Table 6** in the Pond Siting Report (under separate cover) for a summary of floodplain impacts and compensation. In addition, runoff within the corridor will be collected and conveyed to stormwater management facilities; therefore, reducing overall impacts to the remaining floodplain. Floodplain impacts due to the proposed corridor were calculated and documented in the Pond Siting Report.

4.3 **Project Classification**

The floodplain is in a medium density, semi-urbanized area and the encroachments are classified as "minimal". Minimal encroachment of a floodplain occurs when there is floodplain involvement, but the impacts on human life, transportation facilities, and natural

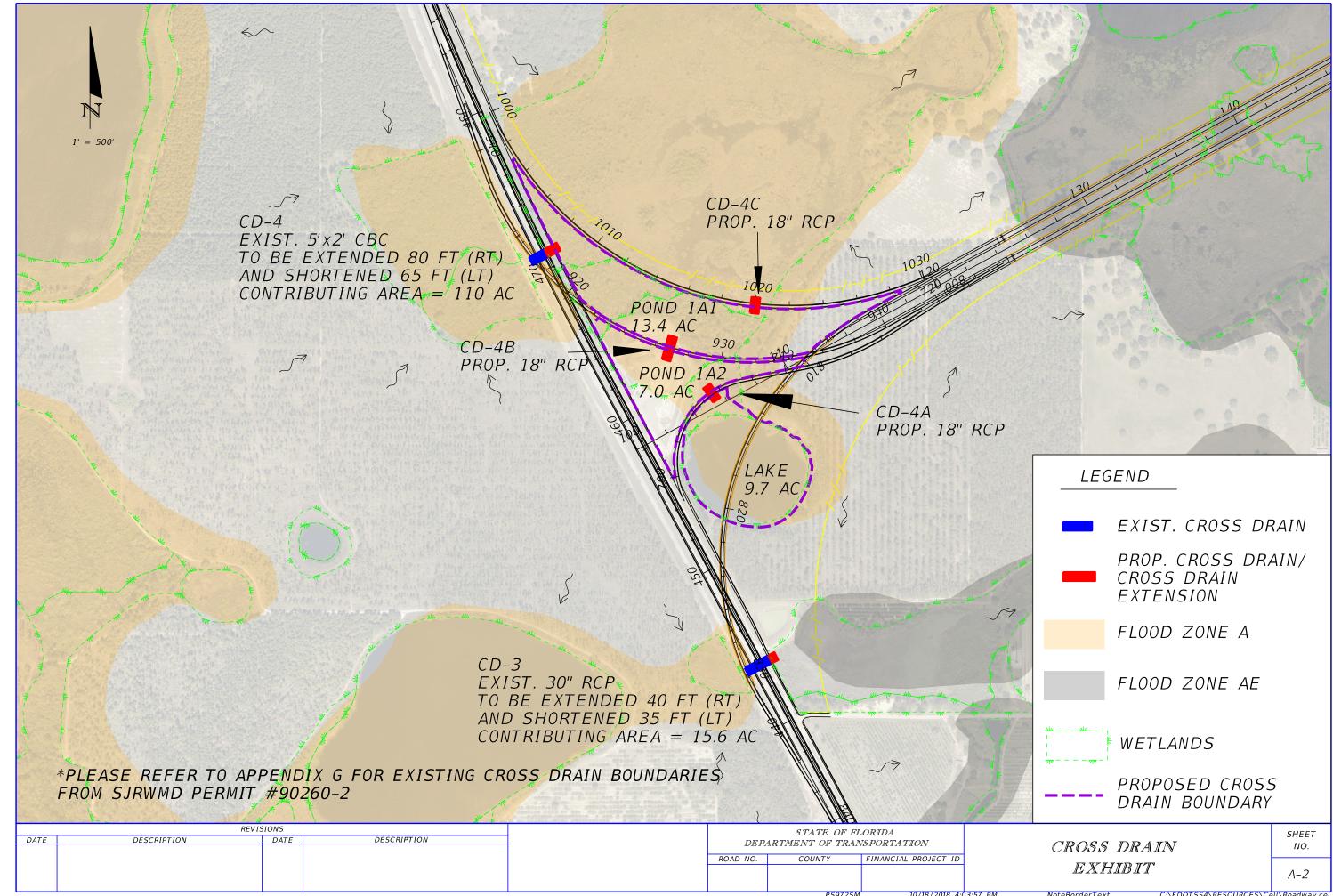
and beneficial floodplain values are not significant and can be resolved with minimal efforts. Normally, these minimal efforts to address the impacts will consist of applying the FDOT drainage design standards and following the SJRWMD and SFWMD procedures to achieve results that will not increase or significantly change the flood elevation and the floodplain limits.

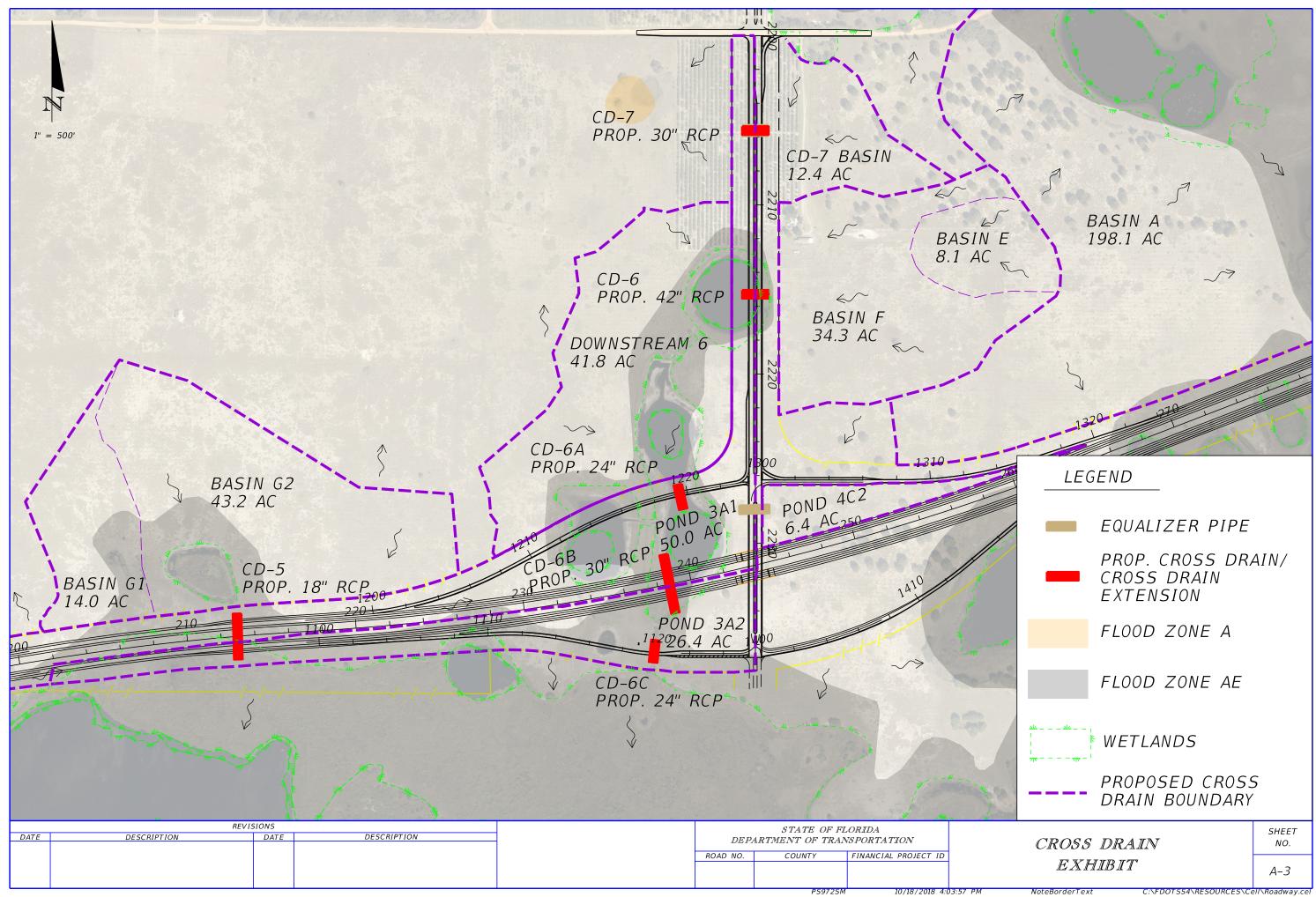
4.4 Flooding History and Maintenance Concern

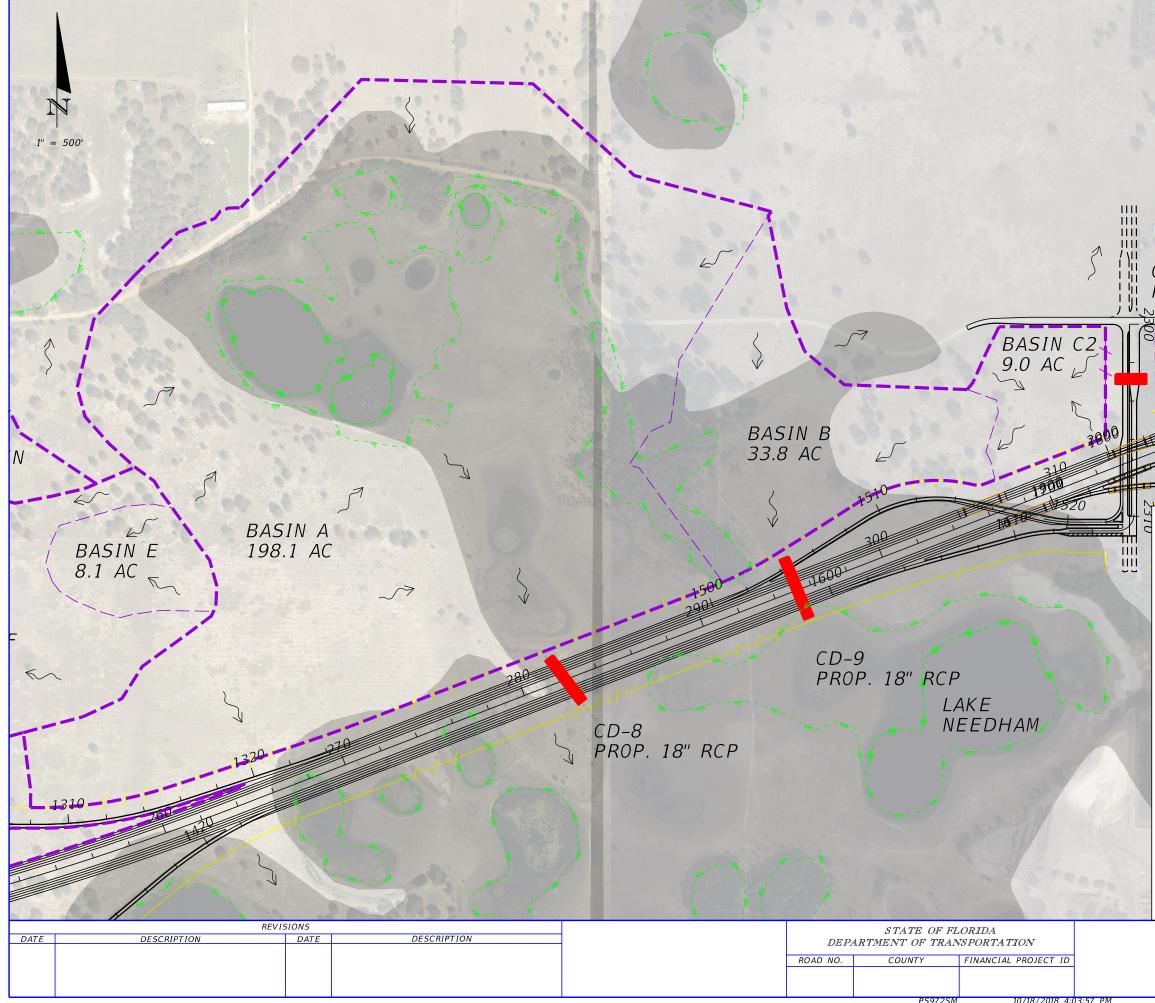

Based on Environmental Look Around (ELA) meetings with the water management districts and the counties, there are no major flooding concerns within the region. Due to the project being located in a mostly rural area surrounded by floodplains and wetlands, any flooding within the area does not create any major risks. There was not any flooding history along the existing US 27 or SR 429 that was mentioned.

5.0 CONCLUSION

The purpose of this report was to provide detail regarding the design and analysis of cross drain locations required along the proposed Lake/Orange County Connector corridor to reduce impacts to floodplains and wetlands. The proposed alignment will cross through wetlands, agricultural land, and wooded areas. The proposed cross drain locations were chosen based on maintaining the natural flow of the land from the surrounding floodplains and wetlands. Twelve cross drains were selected and analyzed for this project, and three existing cross drains were analyzed for extension. The flow rates for cross drains 2, 3, and 4 (pre-development) were obtained from the existing permit #90260-2. The flow rates for cross drain 7 were determined through use of the Rational Method. Cross drains 4, 4A, 4B, 4C, 5, 6, 6A, 6B, 6C, 8, 9, and 10 were modeled in ICPR to determine the design flow rates. Each cross drain was designed for a 50-year storm event, and the 100-year elevation was also analyzed in order to compare the 100year backwater elevation with the 100-year existing flood elevation. Proposed culverts were initially set at a size of 18". The culvert sizes were then modified to avoid overtopping the 50-year roadway stage elevation, and to avoid significant impacts to the 100-year floodplain elevations. The floodplains will be impacted due to longitudinal roadway construction and proposed pond locations. By following FDOT design standards and water management procedures, the proposed cross drains will have minimal impacts on the existing floodplains and wetlands. The purpose is to achieve results which do not increase or significantly change existing flood elevations or floodplain limits. The proposed cross drains located within floodplains will have minor volumetric impacts, and insignificant impact to flood stage and flood limits. The final design team should verify the proposed culvert sizes and their locations, based on the final roadway geometry and profile.


Appendix A – Cross Drain Exhibits


KEEN	CD-2 EXIST. 4'x3' CBC TO BE EXTENDED 25 FT CONTRIBUTING AREA = 61.3 AC
	CD-1 EXIST. 2-10'x4' CBO CONTRIBUTING ARE
HIDDEN LAKE	
*PLEASE REFER TO APPENDIX G FOR EXISTING CROSS DRAIN E FROM SJRWMD PERMIT #90260-2	ROUNDARIES
REVISIONS DATE DESCRIPTION DATE DESCRIPTION	STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION ROAD NO. COUNTY FINANCIAL PROJECT ID PS9725M 10/18/2018 4:03:57 PM



NoteBorderText

C:\FDOTSS4\RESOURCES\Cell\Roadway.ce

CD-10 PROP. 24" RCP BASIN C1 1710 LEGEND PROP. CROSS DRAIN/ CROSS DRAIN EXTENSION FLOOD ZONE A FLOOD ZONE AE WETLANDS PROPOSED CROSS DRAIN BOUNDARY SHEET CROSS DRAIN NO. EXHIBIT A-4

NoteBorderText

C:\FDOTSS4\RESOURCES\Cell\Roadway.c

Appendix B – FEMA Maps

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of armali size. The community map repository should be consulted for possible updated or additional flood hazard information.

Constal Base Flood Elevations (BFEs) shown on this map apply only landbard Or 00 North America Workid Diatum of 1986 (NAVD 83), User of this First should be aware that coastal flood elevations are also provided in the Summary of Silwater Elevations table in the Flood Insurance Study report for this jurisdición. Elevations binow in the Summary of Silwater Elevations table should be used for construction whom on the First.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway withts and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdician.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study ereost for information on flood control structures for this invisicilian.

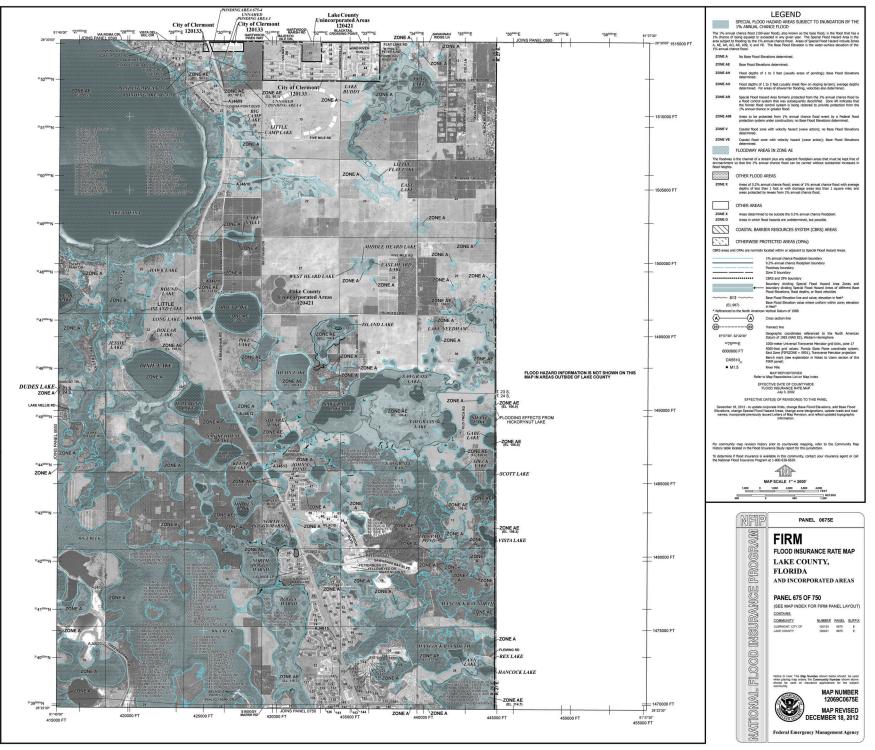
The projection used in the preparation of this map was Transverse Mercator State Plane Florida East FIPS 0001. The horizontal datum was NAD83 HARN, GRS 1980 aphroid. Differencis in datum, spherol, projection or State Plane zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in may features across situidation horizontal schemes de not difference in may features across situidation horizontal providences do not the production of the state across the state of th

Tool elevations on this map are referenced to the North American Vertical Datum of 1985. These flood elevations must be compared to structure and ground elevations to the structure of between the National Geodetic Vertical Datum of 1926 van the North American Vertical Datum of 1986, visit the National Geodetic Survey website at the following and and or constant the National Geodetic Survey at the following the following the following the following the structure of the following the

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Sping, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench man shown on this map, please contact the Information Services Branch of the Nation Geodetic Survey at (301) 713-3242 or visit its website at <u>http://www.ngs.noaa.gov/</u>

Base map information shown on this FIRM was provided in digital format by Lake County and the Florida Geographic Data Library. Orthophotography was collected in 2009 by the Southwest Florida and St. Johns River Water Management District.


This may reflect more detailed and up to oble stream channel configurations and those shown on the previour TMG for this previous. The Booglastics and Booglastic and Booglastics and the stream of the stream of

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate commanity officiats to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

For information and questions about this map, available products associated with hiss PRM including history winnise of the FIRM how to ded products the Ministeal Flood Instructure Troygen in general, please and the FEMA Mapping Information How the structure of the Change, a Flood Insurance Report, and/or digital without of the Ministea of Map Change, a Flood Insurance Report, and/or digital without of How them is a three flow the Change, a Flood Insurance Report, and/or digital without of the How the How

The "profile base lines" depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data. the "profile base line", in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.

B-1

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The **community map repository** should be consulted for possible updated or additional flood hazard information.

o obtain more detailed information in areas where Base Flood Elev ane (REFe uccam more obtained internation in areas where Base Flood Elevations (FEE) and/of floodways have been determined, users are encouraged to consult the Flood Florifes and the Software Data and/or Solwater Elevations tables contained while the Flood Insurance Software (FIG) seports that software the Software Data and the Softwar

Cestal Base Flood Elevations shown on this map apply only landward of 0.07 North Amrican Verteal Datum of 1988 (NVID 88). Users of this FIRM should be aware that costal flood elevations are also provided in the Summary of Stillwate Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations and/or floodpian management purposes when they are higher than the elevations advisor on the Simma of Stillwate Elevations table should be used for construction and/or floodpian management purposes when they are higher than the elevations shown on this Firm.

Boundaries of the **floodways** were computed at cross sections and inte between cross sections. The floodways were based on hydraulic consideratis regard to requirements of the National Flood Insurance Program. Floodway and other pertinent floodway data are provided in the Flood Insurance Stud for this juriadiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control** structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was State Plane Plorida East RIPS Zone 0001. The horizontal datum was NAD33, GR31980 spherical Differences in data, spherod, groupdon or UTM zones used in the production of features across jurisdiction boundaries. These differences do not affect the accuracy of the FIRM.

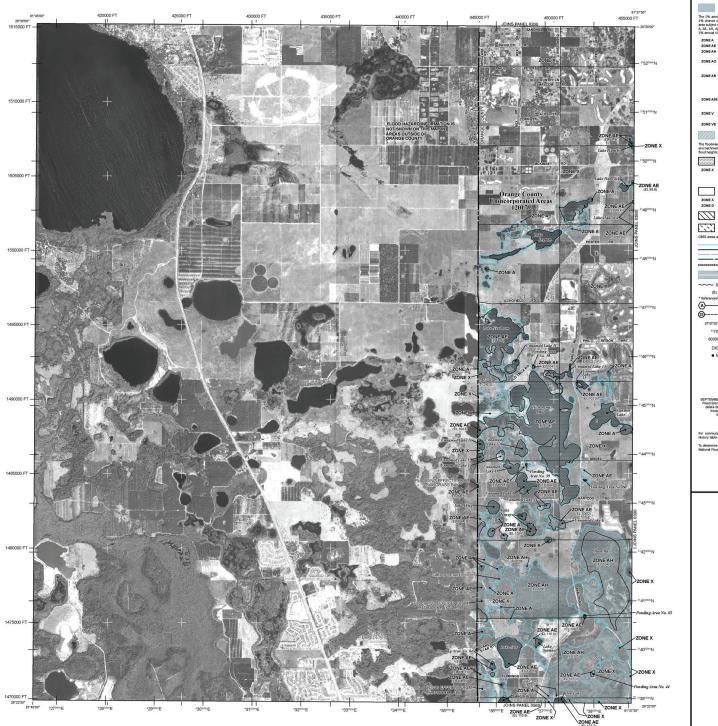
Flood alwaldons on this maps are referenced to the looth humanical bitward bit

Spatial Reference System Division National Geodetic Survey, NOAA Silver Spring Metro Center 1315 East-West Highway Silver Spring, Maryland 20910 (301) 713-3191

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at <u>http://www.ngs.noaa.gov/</u>.

Base map information shown on this FIRM was provided in digital format by Orange County, Florida.

This map effects more detailed and uploaders stream channel configurations has tables shown on the previour FRM for this principant. The foodulate and foodways that were transferred from the previous FRM may have been adjusted to confirm to these new stream channel configurations. As a result, the Food Portles and Foodway Data tables in the Flood Insurance Study report (includ configu-tations and the stream channel common stream channels and motions and the stream channels and the stream channels will define from what a shown on this map.


Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to ward current composite limit locations.

e refer to the separately printed Map Index for an overview map of the county ng the layout of map panels; community map repository addresses; and a of Communities table containing National Flood Insurance Program dates for community as well as a listing of the panels on which each community is a Listing of Co

Contact the FEMA Map Service Center at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include previously associated Letters of Map Change, a Food Insurance Study report and/or digital versions of this map. The FEMA Map Service Center may also be reached by Fax at 1-800-356-602 and its weeked at <u>Iter/Jown mar. Center</u> const.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at <u>http://www.fema.gov/bu</u>siness/hflo/.

Watershed Name	Minimum Conversion	Maximum Conversion	Average Conversion	Maximum Offset
Big Econlockhatchee River	-1.03	-1.15	-1.09	0.06
Boggy Creek	-0.91	-1.01	-0.96	0.05
Cypress Creek	-0.87	-0.91	-0.89	0.02
Howell Branch	-0.96	-1.05	-0.98	0.07
Lake Apopka	-0.87	-0.97	-0.91	0.06
Lake Hart	-0.97	-1.07	-1.02	0.05
Little Econlockhatchee River	-0.92	-1.07	-1.01	0.09
Little Wekiva River	-0.91	-1.02	-0.95	0.07
Reedy Creek	-0.88	-0.89	-0.88	0.02
Shingle Creek	-0.88	-0.95	-0.91	0.04
St. Johns River	-1.08	-1.33	-1.19	0.14
Wekha River	-0.68	-1.01	-0.94	0.07

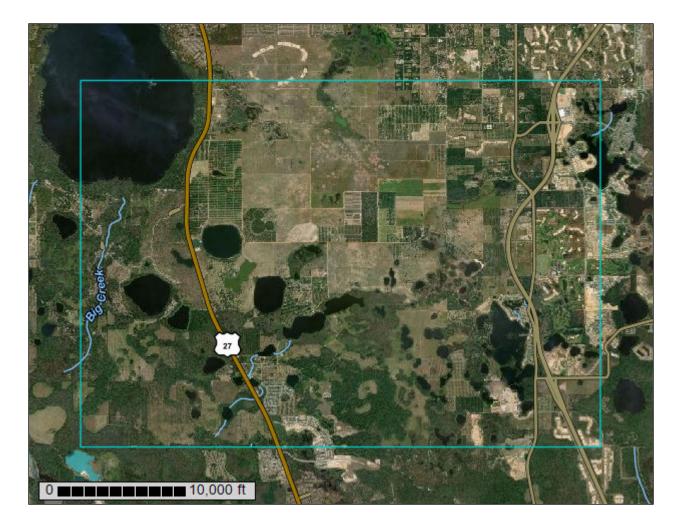
LEGEND SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD EVENT The 1% enrul discer food, dis tomos as the base flood between the flood that has a like character of being equated or exceeded in any given year. The Special Flood heard Area is the era subject to flood by the 1% mmail character flood. Areas of Special Flood heard Area is short area subject to flood by the 1% mmail character flood. Areas of Special Flood heard include 2000 A, AE, AH, AD, AR, AB9, V, and VE. The Base Flood Bevetion is the water-surface elevation of the 1% enrul character flood. No Base Flood Elevations determined. Base Flood Elevations determined. Rood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevation Hood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of aluvial fan flooding, velocities also determined. Area of special flood hazard formerly protected from the 1% annual chance flood event by a flood control system that was subsequently descritified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood. ZONE A99 Areas to be protected from 1% annual chance flood event by a Federal flood protection system under construction; no Base Flood Elevations determined. Coastal flood zone with velocity hazard (wave action); no Base Flood Elevati Coastal flood zone with velocity hazard (wave action); Base Flood Elevation FLOODWAY AREAS IN ZONE AE The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free or encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights. OTHER FLOOD AREAS Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood. OTHER AREAS Areas determined to be outside the 0.2% annual chance floodplain. Areas in which flood hazards are undetermined, but possible. COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS OTHERWISE PROTECTED AREAS (OPAs) CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Area 1% annual chance floodplain boundary 0.2% annual chance floodplain boundary Floodway boundary Zone D boundary CBRS and OPA boundary Boundary dividing Special Flood Hazard Areas of different B Flood Elevations, flood depths or flood velocities. ---- 513 -----Base Flood Elevation line and value; elevation in fer Base Flood Elevation value where uniform within zo in feet* (EL 987) in feet* Vertical Datum of 1988 (NAVD 88) renced to the Nor -(A) Cross section line Transect line -23 Geographic coordinates referenced to the North American Datum of 1983 (NAD 83), Western Hemisphere 97*07'30", 32*22'30" 1000-meter Universal Transverse Mercator grid ticks, zone 17 5000-foct grid veltess: Rioride State Plane coordinate system East Zone (FIPSZONE = 901), Transverse Mercator projection Bench mark (see explanation in Notes to Users section of this FIPM newsit) 4275000mE 6000000 FT East Zone (FIPSZONE = 1 Bench mark (see explan FIRM panel) River Mile DX5510 • M1.5 MAP REPOSITORIES Refer to Map Repositories list on Map Index EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP DECEMBER 6, 2000 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL SEPTEMBER 25, 2009 - to update corporate limits, to change Base Flood Elev Areas, to update map format, to add roi sued Letters of Map Revision, to reflect u For community map revision history prior to countywide mapping, refer to the History table located in the Flood Insurance Study report for this jurisdiction. To determine if flood insurance is available in this community, contact your in National Flood Insurance Program at 1-800-638-6620. 1 MAP SCALE 1" = 2000" 1,000 0 1,000 2,000 3,000 4,000 FEF . . HETE -----NFIP PANEL 0375F PROGRAM FIRM FLOOD INSURANCE RATE MAP ORANGE COUNTY, FLORIDA AND INCORPORATED AREAS NATIONAL FLOOD INSURANCE PANEL 375 OF 750 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS: COMMUNITY NUMBER PANEL SUFFIX 120179

E. MAP REVISED SEPTEMBER 25, 2009 Federal Emergency Management Agency

Notice to User: The Map Number shown below should be used when placing map orders; the Community Number shown above should be used on insurance applications for the subject

MAP NUMBER 12095C0375F

Appendix C – USDA Soil Survey



United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Lake County Area, Florida, and Orange County, Florida

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

3

Contents

Preface	2
How Soil Surveys Are Made	6
Soil Map	9
Soil Map	.10
Legend	.11
Map Unit Legend	. 13
Map Unit Descriptions	. 15
Lake County Area, Florida	. 17
4—Anclote and Myakka soils	
5—Apopka sand, 0 to 5 percent slopes	
6—Apopka sand, 5 to 12 percent slopes	
8—Candler sand, 0 to 5 percent slopes	
9—Candler sand, 5 to 12 percent slopes	
10—Candler sand, 12 to 40 percent slopes	
12—Cassia sand	
17—Arents	
20—Immokalee sand	. 30
21—Lake sand, 0 to 5 percent slopes	
22—Lake sand, 5 to 12 percent slopes	
24—Kendrick sand, 0 to 5 percent slopes	
25—Kendrick sand, 5 to 8 percent slopes	
28—Myakka-Myakka, wet, sands, 0 to 2 percent slopes	
30—Lochloosa sand	
32—Oklawaha muck	
33—Ona-Ona, wet, fine sand, 0 to 2 percent slopes	
34—Orlando fine sand, 0 to 5 percent slopes	
35—Paola sand, 0 to 5 percent slopes	
37—Ellzey sand	
38—Placid sand, frequently ponded, 0 to 2 percent slopes	
39—Seffner sand	
40—Placid and Myakka sands, depressional	
41—Pomello sand, 0 to 5 percent slopes	
42—Pompano sand	
43—St. Lucie sand, 0 to 8 percent slopes	
44—Swamp	
45—Tavares sand, 0 to 5 percent slopes	
46—Orsino sand	
50—Borrow Pits	
99—Water	
Orange County, Florida	
1—Arents, nearly level	
3—Basinger fine sand, frequently ponded, 0 to 1 percent slopes	
4—Candler fine sand, 0 to 5 percent slopes	
5—Candler fine sand, 5 to 12 percent slopes	

6—Candler-Apopka fine sands, 5 to 12 percent slopes	72
20—Immokalee fine sand	
33—Pits	
34—Pomello fine sand, 0 to 5 percent slopes	
37—St. Johns fine sand	79
41—Samsula-Hontoon-Basinger association, depressional	
42—Sanibel muck	83
43—Seffner fine sand, 0 to 2 percent slopes	85
44—Smyrna-Smyrna, wet, fine sand, 0 to 2 percent slopes	
46—Tavares fine sand, 0 to 5 percent slopes	89
47—Tavares-Millhopper complex, 0 to 5 percent slopes	91
99—Water	
Soil Information for All Uses	94
Soil Properties and Qualities	
Soil Qualities and Features	94
Hydrologic Soil Group	
References	102

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

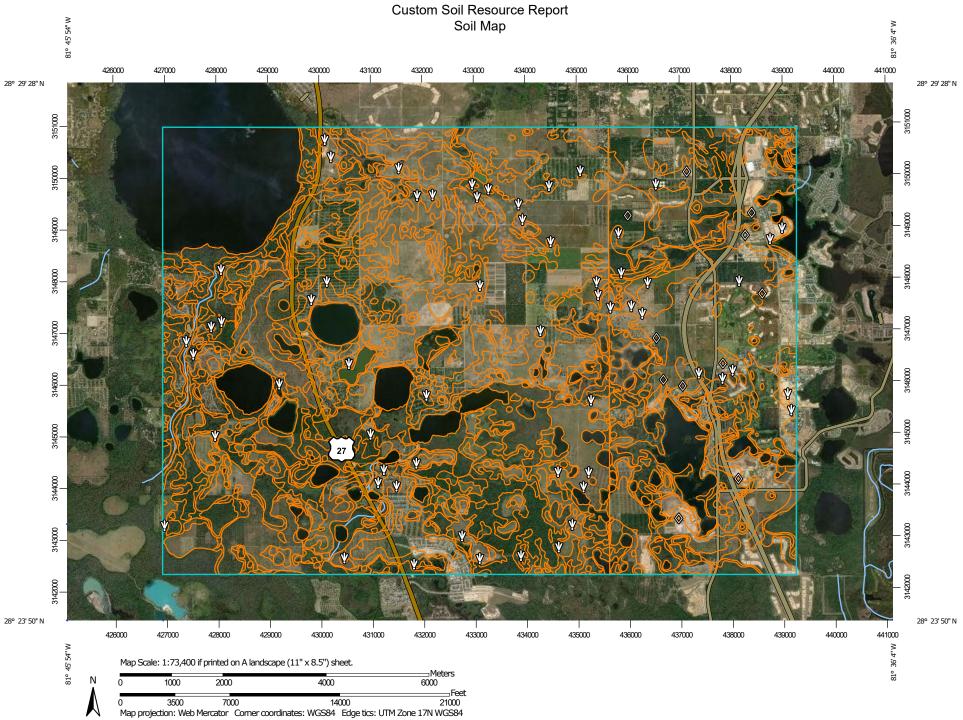
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

10

MAP LEGEND			
Area of Int	erest (AOI)	3	Spoil Area
	Area of Interest (AOI)	٥	Stony Spot
Soils		0	Very Stony Spot
	Soil Map Unit Polygons	\$2	Wet Spot
~	Soil Map Unit Lines	Å	Other
	Soil Map Unit Points		Special Line Features
Special	Point Features Blowout	Water Feat	ures
R	Borrow Pit	\sim	Streams and Canals
⊠ ¥	Clay Spot	Transporta	
1.4	Closed Depression	••••	Rails
\diamond	Gravel Pit	~	Interstate Highways
X	Gravelly Spot	~	US Routes
**	Landfill	\sim	Major Roads
ø	Lava Flow	\sim	Local Roads
A.		Backgrour	
عليه	Marsh or swamp	100	Aerial Photography
突	Mine or Quarry		
0	Miscellaneous Water		
0	Perennial Water		
\vee	Rock Outcrop		
+	Saline Spot		
0 0 0 0	Sandy Spot		
-	Severely Eroded Spot		
\diamond	Sinkhole		
≫	Slide or Slip		
ø	Sodic Spot		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lake County Area, Florida Survey Area Data: Version 18, Sep 13, 2018

Soil Survey Area: Orange County, Florida Survey Area Data: Version 15, Sep 13, 2018

Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different scales, with a different land use in mind, at different times, or at different levels of detail. This may result in map unit symbols, soil properties, and interpretations that do not completely agree across soil survey area boundaries.

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Dec 8, 2010—Nov 26, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
4	Anclote and Myakka soils	738.3	2.8%
5	Apopka sand, 0 to 5 percent slopes	41.6	0.2%
6	Apopka sand, 5 to 12 percent slopes	41.4	0.2%
8	Candler sand, 0 to 5 percent slopes	5,851.8	22.1%
9	Candler sand, 5 to 12 percent slopes	2,822.8	10.7%
10	Candler sand, 12 to 40 percent slopes	261.4	1.0%
12	Cassia sand	45.0	0.2%
17	Arents	173.7	0.7%
20	Immokalee sand	647.4	2.4%
21	Lake sand, 0 to 5 percent slopes	341.5	1.3%
22	Lake sand, 5 to 12 percent slopes	182.4	0.7%
24	Kendrick sand, 0 to 5 percent slopes	36.5	0.1%
25	Kendrick sand, 5 to 8 percent slopes	16.2	0.1%
28	Myakka-Myakka, wet, sands, 0 to 2 percent slopes	977.5	3.7%
30	Lochloosa sand	7.3	0.0%
32	Oklawaha muck	446.8	1.7%
33	Ona-Ona, wet, fine sand, 0 to 2 percent slopes	7.5	0.0%
34	Orlando fine sand, 0 to 5 percent slopes	2.8	0.0%
35	Paola sand, 0 to 5 percent slopes	24.8	0.1%
37	Ellzey sand	6.5	0.0%
38	Placid sand, frequently ponded, 0 to 2 percent slopes	143.7	0.5%
39	Seffner sand	26.3	0.1%
40	Placid and Myakka sands, depressional	813.9	3.1%
41	Pomello sand, 0 to 5 percent slopes	279.8	1.1%
42	Pompano sand	55.1	0.2%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
43	St. Lucie sand, 0 to 8 percent slopes	39.9	0.2%
44	Swamp	935.6	3.5%
45	Tavares sand, 0 to 5 percent slopes	623.9	2.4%
46	Orsino sand	19.4	0.1%
50	Borrow Pits	7.6	0.0%
99	Water	3,002.4	11.4%
Subtotals for Soil Survey Area		18,620.7	70.4%
Totals for Area of Interest		26,438.6	100.0%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1	Arents, nearly level	1.0	0.0%
3	Basinger fine sand, frequently ponded, 0 to 1 percent slopes	681.0	2.6%
4	Candler fine sand, 0 to 5 percent slopes	2,946.5	11.1%
5	Candler fine sand, 5 to 12 percent slopes	2,163.5	8.2%
6	Candler-Apopka fine sands, 5 to 12 percent slopes	69.2	0.3%
20	Immokalee fine sand	199.8	0.8%
33	Pits	2.1	0.0%
34	Pomello fine sand, 0 to 5 percent slopes	113.6	0.4%
37	St. Johns fine sand	44.2	0.2%
41	Samsula-Hontoon-Basinger association, depressional	98.5	0.4%
42	Sanibel muck	91.8	0.3%
43	Seffner fine sand, 0 to 2 percent slopes	2.7	0.0%
44	Smyrna-Smyrna, wet, fine sand, 0 to 2 percent slopes	12.7	0.0%
46	Tavares fine sand, 0 to 5 percent slopes	202.0	0.8%
47	Tavares-Millhopper complex, 0 to 5 percent slopes	238.1	0.9%
99	Water	951.4	3.6%
Subtotals for Soil Survey Area		7,818.0	29.6%
Totals for Area of Interest		26,438.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas

shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lake County Area, Florida

4—Anclote and Myakka soils

Map Unit Setting

National map unit symbol: 1qt5x Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Anclote and similar soils: 35 percent Myakka and similar soils: 30 percent Felda and similar soils: 20 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Anclote

Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy marine deposits

Typical profile

A - 0 to 12 inches: fine sand Cg - 12 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 4.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7w
Hydrologic Soil Group: A/D
Forage suitability group: Sandy soils on stream terraces, flood plains, or in depressions (G154XB145FL)
Other vegetative classification: Slough (R154XY011FL)
Hydric soil rating: Yes

Description of Myakka

Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy marine deposits

Typical profile

A - 0 to 6 inches: sand

- E 6 to 20 inches: sand
- Bh 20 to 36 inches: sand
- C 36 to 80 inches: sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 5.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7w
Hydrologic Soil Group: A/D
Forage suitability group: Sandy soils on stream terraces, flood plains, or in depressions (G154XB145FL)
Other vegetative classification: Slough (R154XY011FL)
Hydric soil rating: Yes

Description of Felda

Setting

Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy and loamy marine deposits

Typical profile

A - 0 to 3 inches: fine sand E - 3 to 25 inches: fine sand Btg - 25 to 56 inches: sandy clay loam Ckg - 56 to 60 inches: marly clay

Properties and qualities

Slope: 0 to 2 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: Occasional
Calcium carbonate, maximum in profile: 15 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: A/D Forage suitability group: Sandy over loamy soils on stream terraces, flood plains, or in depressions (G154XB245FL) Other vegetative classification: Slough (R154XY011FL) Hydric soil rating: Yes

Minor Components

Brighton, depressional

Percent of map unit: 5 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Other vegetative classification: Freshwater Marshes and Ponds (R154XY010FL) Hydric soil rating: Yes

Oklawaha, freq. flooded

Percent of map unit: 5 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: Freshwater Marshes and Ponds (R154XY010FL) Hydric soil rating: Yes

Manatee, depressional

Percent of map unit: 5 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Other vegetative classification: Freshwater Marshes and Ponds (R154XY010FL) Hydric soil rating: Yes

5—Apopka sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2w0q6 Elevation: 40 to 150 feet Mean annual precipitation: 44 to 56 inches Mean annual air temperature: 66 to 77 degrees F Frost-free period: 248 to 365 days Farmland classification: Farmland of unique importance

Map Unit Composition

Apopka and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Apopka

Setting

Landform: Knolls on marine terraces, ridges on marine terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope, interfluve, tread Down-slope shape: Linear, convex Across-slope shape: Convex, linear Parent material: Eolian deposits and/or sandy and loamy marine deposits

Typical profile

- A 0 to 6 inches: sand
- E 6 to 55 inches: sand
- Bt 55 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3s
Hydrologic Soil Group: A
Forage suitability group: Sandy soils on ridges and dunes of xeric uplands (G154XB111FL)
Other vegetative classification: Upland Hardwood Hammock (R154XY008FL), Longleaf Pine-Turkey Oak Hills (R154XY002FL)
Hydric soil rating: No

Minor Components

Sparr

Percent of map unit: 6 percent Landform: Rises on marine terraces, flats on marine terraces Landform position (three-dimensional): Interfluve, rise Down-slope shape: Convex, linear Across-slope shape: Linear, convex Other vegetative classification: Upland Hardwood Hammock (R154XY008FL) Hydric soil rating: No

Jumper

Percent of map unit: 5 percent Landform: Flats on marine terraces Landform position (three-dimensional): Interfluve, talf Down-slope shape: Linear, convex Across-slope shape: Convex, linear Hydric soil rating: No

Candler

Percent of map unit: 5 percent Landform: Ridges on marine terraces, knolls on marine terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve, side slope, tread Down-slope shape: Convex Across-slope shape: Convex Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R155XY002FL), Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Jonesville

Percent of map unit: 4 percent Landform: Rises on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex, linear Across-slope shape: Linear, convex Hydric soil rating: No

6—Apopka sand, 5 to 12 percent slopes

Map Unit Setting

National map unit symbol: 1qt5z *Elevation:* 40 to 150 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Farmland of unique importance

Map Unit Composition

Apopka and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Apopka

Setting

Landform: Ridges on marine terraces, knolls on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Eolian deposits and/or sandy and loamy marine deposits

Typical profile

A - 0 to 6 inches: sand E - 6 to 55 inches: sand Bt - 55 to 80 inches: sandy clay loam

Properties and qualities

Slope: 5 to 12 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4s
Hydrologic Soil Group: A
Forage suitability group: Sandy soils on strongly sloping to steep side slopes of xeric uplands (G154XB113FL)
Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL)
Hydric soil rating: No

Minor Components

Apopka

Percent of map unit: 7 percent Landform: Ridges on marine terraces, knolls on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL)

Hydric soil rating: No

Kendrick

Percent of map unit: 7 percent Landform: Ridges on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Kendrick, thin subsurface

Percent of map unit: 6 percent Landform: Ridges on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Upland Hardwood Hammock (R154XY008FL) Hydric soil rating: No

8—Candler sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2t3z1 Elevation: 10 to 260 feet Mean annual precipitation: 47 to 56 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 280 to 365 days Farmland classification: Farmland of unique importance

Map Unit Composition

Candler and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Candler

Setting

Landform: Knolls on marine terraces, ridges on marine terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope, interfluve, tread Down-slope shape: Convex Across-slope shape: Convex Parent material: Eolian deposits and/or sandy and loamy marine deposits

Typical profile

A - 0 to 6 inches: sand *E - 6 to 63 inches:* sand *E and Bt - 63 to 80 inches:* sand

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4s
Hydrologic Soil Group: A
Forage suitability group: Sandy soils on ridges and dunes of xeric uplands (G154XB111FL), Sandy soils on ridges and dunes of xeric uplands (G155XB111FL)
Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R155XY002FL), Longleaf Pine-Turkey Oak Hills (R154XY002FL)

Hydric soil rating: No

Minor Components

Tavares

Percent of map unit: 5 percent Landform: Ridges on marine terraces Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Interfluve Down-slope shape: Convex, concave Across-slope shape: Linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Millhopper

Percent of map unit: 5 percent Landform: Ridges on marine terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

9—Candler sand, 5 to 12 percent slopes

Map Unit Setting

National map unit symbol: 2w0q4 Elevation: 30 to 160 feet Mean annual precipitation: 44 to 56 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 290 to 365 days Farmland classification: Farmland of unique importance

Map Unit Composition

Candler and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Candler

Setting

Landform: Knolls on marine terraces, ridges on marine terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope, interfluve, tread Down-slope shape: Linear, convex Across-slope shape: Convex Parent material: Eolian deposits and/or sandy and loamy marine deposits

Typical profile

A - 0 to 5 inches: sand *E* - 5 to 67 inches: sand *E* and *B*t - 67 to 80 inches: sand

Properties and qualities

Slope: 5 to 12 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Forage suitability group: Sandy soils on strongly sloping to steep side slopes of xeric uplands (G154XB113FL)
 Other vegetative classification: Sand Pine Scrub (R154XY001FL), Longleaf Pine-Turkey Oak Hills (R154XY002FL)

Hydric soil rating: No

Minor Components

Apopka

Percent of map unit: 6 percent Landform: Ridges on marine terraces, knolls on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex, linear Across-slope shape: Linear, convex Hydric soil rating: No

Kendrick

Percent of map unit: 5 percent Landform: Ridges on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Linear, convex Across-slope shape: Convex, linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Adamsville

Percent of map unit: 3 percent Landform: Rises on marine terraces, knolls on marine terraces Landform position (three-dimensional): Interfluve, talf Down-slope shape: Convex, linear Across-slope shape: Linear, convex Hydric soil rating: No

Pompano

Percent of map unit: 1 percent Landform: Flats on marine terraces Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear, convex Hydric soil rating: Yes

10—Candler sand, 12 to 40 percent slopes

Map Unit Setting

National map unit symbol: 1nrvg Elevation: 40 to 150 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Candler and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Candler

Setting

Landform: Hills on marine terraces, ridges on marine terraces Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Eolian or sandy marine deposits

Typical profile

A - 0 to 3 inches: sand *E - 3 to 67 inches:* sand *E and Bt - 67 to 80 inches:* sand

Properties and qualities

Slope: 12 to 40 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7s
Hydrologic Soil Group: A
Forage suitability group: Sandy soils on strongly sloping to steep side slopes of xeric uplands (G154XB113FL)
Other vegetative classification: Sand Pine Scrub (R154XY001FL)
Hydric soil rating: No

Minor Components

Kendrick

Percent of map unit: 5 percent Landform: Ridges on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Apopka

Percent of map unit: 5 percent

Custom Soil Resource Report

Landform: Ridges on marine terraces, knolls on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

12—Cassia sand

Map Unit Setting

National map unit symbol: 1nrvj Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Cassia and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Cassia

Setting

Landform: Rises on marine terraces Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 4 inches: sand *E* - 4 to 25 inches: sand *Bh* - 25 to 37 inches: sand *C* - 37 to 80 inches: sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat poorly drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: About 12 to 42 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 3.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A/D Forage suitability group: Sandy soils on rises and knolls of mesic uplands (G154XB131FL) Other vegetative classification: South Florida Flatwoods (R154XY003FL) Hydric soil rating: No

Minor Components

Immokalee, non-hydric

Percent of map unit: 10 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: South Florida Flatwoods (R154XY003FL) Hydric soil rating: No

17—Arents

Map Unit Setting

National map unit symbol: 1qt6b Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Arents and similar soils: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Arents

Setting

Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Altered marine deposits

Typical profile

C - 0 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 5 percent *Depth to restrictive feature:* More than 80 inches *Natural drainage class:* Somewhat poorly drained *Runoff class:* Low

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 1.98 in/hr)
Depth to water table: About 30 to 60 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Moderate (about 7.8 inches)

20—Immokalee sand

Map Unit Setting

National map unit symbol: 1nrvs Elevation: 10 to 60 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Immokalee, non-hydric, and similar soils: 70 percent Immokalee, hydric, and similar soils: 20 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Immokalee, Non-hydric

Setting

Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 4 inches: sand *E* - 4 to 38 inches: sand *Bh* - 38 to 56 inches: sand *BC* - 56 to 68 inches: sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 5.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: B/D Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G154XB141FL) Other vegetative classification: South Florida Flatwoods (R154XY003FL) Hydric soil rating: No

Description of Immokalee, Hydric

Setting

Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Concave Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 4 inches: sand E - 4 to 38 inches: sand Bh - 38 to 56 inches: sand BC - 56 to 68 inches: sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 5.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified
 Land capability classification (nonirrigated): 4w
 Hydrologic Soil Group: B/D
 Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G154XB141FL)
 Other vegetative classification: South Florida Flatwoods (R154XY003FL)
 Hydric soil rating: Yes

Minor Components

Wabasso, hydric Percent of map unit: 5 percent

Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: South Florida Flatwoods (R154XY003FL) Hydric soil rating: Yes

Placid, depressional

Percent of map unit: 5 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Other vegetative classification: Slough (R154XY011FL) Hydric soil rating: Yes

21—Lake sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 1qt6g Elevation: 30 to 150 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Farmland of unique importance

Map Unit Composition

Lake and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Lake

Setting

Landform: Ridges, hills, marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Parent material: Eolian deposits or sandy fluvial or marine deposits

Typical profile

A - 0 to 7 inches: sand *C* - 7 to 80 inches: sand

Properties and qualities

Slope: 0 to 5 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained Runoff class: Negligible

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Very high (19.98 to 50.02 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 4.0 Available water storage in profile: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4s
Hydrologic Soil Group: A
Forage suitability group: Sandy soils on ridges and dunes of xeric uplands (G154XB111FL)
Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL)
Hydric soil rating: No

Minor Components

Apopka

Percent of map unit: 10 percent Landform: Ridges on marine terraces, knolls on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Astatula

Percent of map unit: 10 percent Landform: Ridges on marine terraces, hills on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Convex Other vegetative classification: Sand Pine Scrub (R154XY001FL) Hydric soil rating: No

22—Lake sand, 5 to 12 percent slopes

Map Unit Setting

National map unit symbol: 1nrvv Elevation: 40 to 150 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Lake and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Lake

Setting

Landform: Ridges, hills, marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Eolian deposits or sandy fluvial or marine deposits

Typical profile

A - 0 to 5 inches: sand *C - 5 to 80 inches:* sand

Properties and qualities

Slope: 5 to 12 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very high (19.98 to 50.02 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Forage suitability group: Sandy soils on strongly sloping to steep side slopes of xeric uplands (G154XB113FL) Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Minor Components

Apopka

Percent of map unit: 5 percent Landform: Ridges on marine terraces, knolls on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Lake, 0 to 5 percent

Percent of map unit: 5 percent *Landform:* Ridges, hills, marine terraces

Custom Soil Resource Report

Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

24—Kendrick sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 1nrvx Elevation: 40 to 150 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Kendrick and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kendrick

Setting

Landform: Ridges on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy and loamy marine and fluvial deposits

Typical profile

A - 0 to 5 inches: sand E - 5 to 32 inches: sand Bt - 32 to 75 inches: sandy clay loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 5.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3s
Hydrologic Soil Group: A
Forage suitability group: Sandy over loamy soils on knolls and ridges of mesic uplands (G154XB211FL)
Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL)
Hydric soil rating: No

Minor Components

Apopka

Percent of map unit: 10 percent Landform: Ridges on marine terraces, knolls on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

25—Kendrick sand, 5 to 8 percent slopes

Map Unit Setting

National map unit symbol: 1qt6l Elevation: 40 to 150 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Kendrick and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kendrick

Setting

Landform: Ridges on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy and loamy marine and fluvial deposits

Typical profile

A - 0 to 5 inches: sand E - 5 to 27 inches: sand Bt - 27 to 75 inches: sandy clay loam

Properties and qualities

Slope: 5 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 5.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4s
Hydrologic Soil Group: A
Forage suitability group: Sandy over loamy soils on knolls and ridges of mesic uplands (G154XB211FL)
Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL)
Hydric soil rating: No

Minor Components

Kendrick, thin subsurface

Percent of map unit: 10 percent Landform: Ridges on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Upland Hardwood Hammock (R154XY008FL) Hydric soil rating: No

28-Myakka-Myakka, wet, sands, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2twt1 Elevation: 10 to 130 feet Mean annual precipitation: 43 to 62 inches Mean annual air temperature: 64 to 75 degrees F Frost-free period: 280 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Myakka and similar soils: 75 percent *Myakka, wet, and similar soils:* 15 percent *Minor components:* 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Myakka

Setting

Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 6 inches: sand E - 6 to 20 inches: sand Bh - 20 to 36 inches: sand C - 36 to 80 inches: sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 5.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4w
Hydrologic Soil Group: A/D
Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Other vegetative classification: South Florida Flatwoods (R155XY003FL)
Hydric soil rating: No

Description of Myakka, Wet

Setting

Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 6 inches: sand *E* - 6 to 20 inches: sand *Bh* - 20 to 36 inches: sand *C* - 36 to 80 inches: sand

Properties and qualities

Slope: 0 to 2 percent

Custom Soil Resource Report

Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 5.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4w
Hydrologic Soil Group: A/D
Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Other vegetative classification: South Florida Flatwoods (R155XY003FL)
Hydric soil rating: Yes

Minor Components

Basinger

Percent of map unit: 5 percent Landform: Drainageways on marine terraces Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Linear, convex Across-slope shape: Concave, linear Ecological site: South Florida Flatwoods (R155XY003FL) Hydric soil rating: Yes

Eaugallie

Percent of map unit: 4 percent Landform: Flatwoods on marine terraces Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Ecological site: South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

Placid, depressional

Percent of map unit: 1 percent Landform: Depressions on marine terraces Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Dip Down-slope shape: Convex, concave Across-slope shape: Linear, concave Ecological site: Freshwater Marshes and Ponds (R155XY010FL) Hydric soil rating: Yes

30—Lochloosa sand

Map Unit Setting

National map unit symbol: 1qt6r Elevation: 40 to 160 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Farmland of unique importance

Map Unit Composition

Lochloosa and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Lochloosa

Setting

Landform: Ridges on marine terraces, knolls on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy and loamy marine deposits

Typical profile

A - 0 to 7 inches: sand E - 7 to 33 inches: sand Btg - 33 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat poorly drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 36 to 60 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: B Forage suitability group: Sandy over loamy soils on rises and knolls of mesic uplands (G154XB231FL)
Other vegetative classification: Upland Hardwood Hammock (R154XY008FL)
Hydric soil rating: No

Minor Components

Sparr

Percent of map unit: 10 percent Landform: Rises on marine terraces, flats on marine terraces Landform position (three-dimensional): Interfluve, rise Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Upland Hardwood Hammock (R154XY008FL) Hydric soil rating: No

Kendrick

Percent of map unit: 5 percent Landform: Ridges on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

32—Oklawaha muck

Map Unit Setting

National map unit symbol: 1nrw5 Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Oklawaha, freq. flooded, and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Oklawaha, Freq. Flooded

Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Herbaceous organic material over loamy and clayey marine deposits

Typical profile

Oa - 0 to 9 inches: muck

Oe - 9 to 25 inches: mucky peat *Cg1 - 25 to 31 inches:* sandy loam *Cg2 - 31 to 54 inches:* sandy clay

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: High (about 9.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified
 Land capability classification (nonirrigated): 3w
 Hydrologic Soil Group: D
 Forage suitability group: Organic soils in depressions and on flood plains (G154XB645FL)
 Other vegetative classification: Freshwater Marshes and Ponds (R154XY010FL)
 Hydric soil rating: Yes

Minor Components

Brighton, depressional

Percent of map unit: 10 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Other vegetative classification: Freshwater Marshes and Ponds (R154XY010FL) Hydric soil rating: Yes

33—Ona-Ona, wet, fine sand, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2w4gx Elevation: 10 to 130 feet Mean annual precipitation: 46 to 56 inches Mean annual air temperature: 66 to 77 degrees F Frost-free period: 325 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Ona and similar soils: 75 percent Ona, wet, and similar soils: 12 percent Minor components: 13 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ona

Setting

Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 9 inches: fine sand Bh - 9 to 16 inches: fine sand C - 16 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 4.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: B/D Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) Hydric soil rating: No

Description of Ona, Wet

Setting

Landform: Sloughs on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 9 inches: fine sand *Bh* - 9 to 16 inches: fine sand *C* - 16 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 0 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 4.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: B/D Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) Hydric soil rating: Yes

Minor Components

Myakka

Percent of map unit: 5 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

Basinger, hydric

Percent of map unit: 4 percent Landform: Drainageways on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Linear, concave Across-slope shape: Linear, concave Other vegetative classification: Slough (R155XY011FL) Hydric soil rating: Yes

Immokalee

Percent of map unit: 4 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

34—Orlando fine sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2ttld Elevation: 50 to 150 feet Mean annual precipitation: 48 to 56 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 324 to 354 days Farmland classification: Not prime farmland

Map Unit Composition

Orlando and similar soils: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Orlando

Setting

Landform: Ridges, marine terraces Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits over fluviomarine deposits

Typical profile

A - 0 to 20 inches: fine sand C - 20 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 4.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Forage suitability group: Sandy soils on ridges and dunes of xeric uplands (G155XB111FL)
 Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R155XY002FL)
 Hydric soil rating: No

Minor Components

Candler

Percent of map unit: 3 percent Landform: Knolls, marine terraces, ridges Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Seffner

Percent of map unit: 2 percent Landform: Flats, rises, marine terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Interfluve, talf Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: Upland Hardwood Hammock (R154XY008FL) Hydric soil rating: No

35—Paola sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2tzwj Elevation: 0 to 100 feet Mean annual precipitation: 44 to 60 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Paola and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Paola

Setting

Landform: Ridges on marine terraces, hills on marine terraces Landform position (two-dimensional): Summit, backslope Landform position (three-dimensional): Interfluve, side slope, riser Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 6 inches: sand E - 6 to 55 inches: sand B/E - 55 to 80 inches: sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Very high (19.98 to 50.02 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Forage suitability group: Sandy soils on ridges and dunes of xeric uplands (G155XB111FL) Other vegetative classification: Sand Pine Scrub (R155XY001FL) Hydric soil rating: No

Minor Components

Apopka

Percent of map unit: 6 percent

Landform: Ridges on marine terraces, knolls on marine terraces, hills on marine terraces

Landform position (two-dimensional): Summit, backslope

Landform position (three-dimensional): Interfluve, side slope, riser, rise

Down-slope shape: Convex

Across-slope shape: Linear

Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) *Hydric soil rating:* No

Astatula

Percent of map unit: 5 percent
Landform: Knolls on marine terraces, hills on marine terraces, ridges on marine terraces
Landform position (two-dimensional): Summit, backslope
Landform position (three-dimensional): Interfluve, side slope, riser, rise
Down-slope shape: Convex
Across-slope shape: Linear
Hydric soil rating: No

Pomello

Percent of map unit: 4 percent *Landform:* Ridges on marine terraces, knolls on marine terraces *Landform position (two-dimensional):* Backslope, summit

Custom Soil Resource Report

Landform position (three-dimensional): Side slope, interfluve, riser Down-slope shape: Convex, linear Across-slope shape: Linear Ecological site: Sand Pine Scrub (R155XY001FL) Other vegetative classification: Sand Pine Scrub (R155XY001FL) Hydric soil rating: No

37—Ellzey sand

Map Unit Setting

National map unit symbol: 1qt6z Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Ellzey, non-hydric, and similar soils: 70 percent *Ellzey, hydric, and similar soils:* 20 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Ellzey, Non-hydric

Setting

Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy and loamy marine deposits

Typical profile

A - 0 to 5 inches: sand E - 5 to 32 inches: sand Btg - 32 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Moderate (about 8.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: A/D
Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G154XB141FL)
Other vegetative classification: South Florida Flatwoods (R154XY003FL)
Hydric soil rating: No

Description of Ellzey, Hydric

Setting

Landform: Flats on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy and loamy marine deposits

Typical profile

A - 0 to 5 inches: sand E - 5 to 32 inches: sand Btg - 32 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Moderate (about 8.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: B/D
Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G154XB141FL)
Other vegetative classification: South Florida Flatwoods (R154XY003FL)
Hydric soil rating: Yes

Minor Components

Wabasso, non-hydric

Percent of map unit: 5 percent Landform: Ridges on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: South Florida Flatwoods (R154XY003FL)

Hydric soil rating: No

Wabasso, hydric

Percent of map unit: 5 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: South Florida Flatwoods (R154XY003FL) Hydric soil rating: Yes

38—Placid sand, frequently ponded, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2ttln Elevation: 10 to 120 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Placid and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Placid

Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy marine deposits

Typical profile

A - 0 to 18 inches: sand *C - 18 to 80 inches:* sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: Frequent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: A/D
Forage suitability group: Sandy soils on stream terraces, flood plains, or in depressions (G154XB145FL)
Other vegetative classification: Slough (R154XY011FL)
Hydric soil rating: Yes

Minor Components

Adamsville

Percent of map unit: 10 percent Landform: Rises on marine terraces, knolls on marine terraces Landform position (three-dimensional): Talf, rise Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Myakka, hydric

Percent of map unit: 10 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Concave Across-slope shape: Linear Other vegetative classification: South Florida Flatwoods (R155XY003FL) Hydric soil rating: Yes

39—Seffner sand

Map Unit Setting

National map unit symbol: 1qt71 Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Seffner and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Seffner

Setting

Landform: Flats on marine terraces, rises on marine terraces

Landform position (three-dimensional): Interfluve, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A11 - 0 to 6 inches: sand A12 - 6 to 19 inches: sand C - 19 to 80 inches: sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: A/D Forage suitability group: Sandy soils on rises and knolls of mesic uplands (G154XB131FL) Hydric soil rating: No

Minor Components

Felda

Percent of map unit: 10 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: Slough (R154XY011FL) Hydric soil rating: Yes

40—Placid and Myakka sands, depressional

Map Unit Setting

National map unit symbol: 1nrwf Elevation: 10 to 60 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F *Frost-free period:* 340 to 365 days *Farmland classification:* Not prime farmland

Map Unit Composition

Placid and similar soils: 55 percent *Myakka and similar soils:* 35 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Placid

Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy marine deposits

Typical profile

A - 0 to 18 inches: sand *C - 18 to 80 inches:* sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7w
Hydrologic Soil Group: A/D
Forage suitability group: Sandy soils on stream terraces, flood plains, or in depressions (G154XB145FL)
Other vegetative classification: Slough (R154XY011FL)
Hydric soil rating: Yes

Description of Myakka

Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy marine deposits

Typical profile

A - 0 to 6 inches: sand

E - 6 to 20 inches: sand

Bh - 20 to 36 inches: sand

C - 36 to 80 inches: sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 5.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7w
Hydrologic Soil Group: A/D
Forage suitability group: Sandy soils on stream terraces, flood plains, or in depressions (G154XB145FL)
Other vegetative classification: Slough (R154XY011FL)
Hydric soil rating: Yes

Minor Components

Wabasso, hydric

Percent of map unit: 5 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: South Florida Flatwoods (R154XY003FL) Hydric soil rating: Yes

Ellzey, hydric

Percent of map unit: 5 percent Landform: Flats on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: South Florida Flatwoods (R154XY003FL) Hydric soil rating: Yes

41—Pomello sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2sm5n Elevation: 0 to 160 feet Mean annual precipitation: 46 to 64 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Pomello and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pomello

Setting

Landform: Ridges on marine terraces, knolls on marine terraces Landform position (two-dimensional): Backslope, summit Landform position (three-dimensional): Interfluve, side slope, riser Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 4 inches: sand E - 4 to 56 inches: sand Bh - 56 to 62 inches: sand Bw - 62 to 80 inches: sand

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: About 18 to 42 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: A
Forage suitability group: Sandy soils on rises and knolls of mesic uplands (G155XB131FL)
Other vegetative classification: Sand Pine Scrub (R155XY001FL)
Hydric soil rating: No

Minor Components

Immokalee

Percent of map unit: 5 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

Tavares

Percent of map unit: 4 percent
Landform: Ridges on marine terraces, flatwoods on marine terraces, hills on marine terraces, knolls on marine terraces
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Side slope, interfluve, tread, rise
Down-slope shape: Convex, linear
Across-slope shape: Linear, convex
Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R155XY002FL), Sand Pine Scrub (R155XY001FL)
Hydric soil rating: No

St. lucie

Percent of map unit: 3 percent Landform: Ridges on marine terraces, knolls on marine terraces Landform position (two-dimensional): Backslope, summit Landform position (three-dimensional): Side slope, interfluve, riser Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Sand Pine Scrub (R155XY001FL) Hydric soil rating: No

Satellite

Percent of map unit: 3 percent
Landform: Knolls on marine terraces, rises on marine terraces, flatwoods on marine terraces
Landform position (three-dimensional): Tread, talf, rise
Down-slope shape: Convex, linear
Across-slope shape: Linear
Other vegetative classification: Sand Pine Scrub (R155XY001FL)
Hydric soil rating: No

42—Pompano sand

Map Unit Setting

National map unit symbol: 1nrwh Elevation: 10 to 100 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Pompano, non-hydric, and similar soils: 60 percent Pompano, hydric, and similar soils: 20 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pompano, Non-hydric

Setting

Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 5 inches: sand *C - 5 to 80 inches:* sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.6 inches)

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: A/D Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G154XB141FL) *Other vegetative classification:* South Florida Flatwoods (R154XY003FL) *Hydric soil rating:* No

Description of Pompano, Hydric

Setting

Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 5 inches: sand

C - 5 to 80 inches: sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4w
Hydrologic Soil Group: A/D
Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G154XB141FL)
Other vegetative classification: South Florida Flatwoods (R154XY003FL)
Hydric soil rating: Yes

Minor Components

Wabasso, non-hydric

Percent of map unit: 10 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: South Florida Flatwoods (R154XY003FL) Hydric soil rating: No

Anclote

Percent of map unit: 10 percent Landform: Flood plains on marine terraces, depressions on marine terraces, marshes on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Other vegetative classification: Slough (R154XY011FL) Hydric soil rating: Yes

43—St. Lucie sand, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2tzwq Elevation: 70 to 200 feet Mean annual precipitation: 46 to 55 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

St. lucie and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of St. Lucie

Setting

Landform: Ridges on marine terraces, knolls on marine terraces, dunes on marine terraces
Landform position (two-dimensional): Backslope, summit

Landform position (three-dimensional): Interfluve, side slope, riser Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy eolian deposits and/or marine deposits

Typical profile

A - 0 to 6 inches: sand C - 4 to 80 inches: sand

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Very high (19.98 to 39.96 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7s
Hydrologic Soil Group: A
Forage suitability group: Sandy soils on ridges and dunes of xeric uplands (G155XB111FL)
Other vegetative classification: Sand Pine Scrub (R155XY001FL)
Hydric soil rating: No

Minor Components

Pomello

Percent of map unit: 8 percent Landform: Ridges on marine terraces, knolls on marine terraces Landform position (two-dimensional): Backslope, summit Landform position (three-dimensional): Interfluve, side slope, riser Down-slope shape: Linear, convex Across-slope shape: Linear Other vegetative classification: Sand Pine Scrub (R155XY001FL) Hydric soil rating: No

Paola

Percent of map unit: 5 percent Landform: Ridges on marine terraces, hills on marine terraces Landform position (two-dimensional): Summit, backslope Landform position (three-dimensional): Interfluve, side slope, riser Down-slope shape: Linear, convex Across-slope shape: Linear Other vegetative classification: Sand Pine Scrub (R155XY001FL) Hydric soil rating: No

Orsino

Percent of map unit: 2 percent Landform: Knolls on marine terraces, ridges on marine terraces Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve, tread Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Sand Pine Scrub (R155XY001FL) Hydric soil rating: No

44—Swamp

Map Unit Setting

National map unit symbol: 1nrwk Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Mineral soil: 50 percent *Organic soil:* 50 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Mineral Soil

Setting

Landform: Flats on marine terraces Landform position (three-dimensional): Interfluve, talf, dip Down-slope shape: Linear Across-slope shape: Linear

Typical profile

A - 0 to 18 inches: fine sand *C - 18 to 80 inches:* sand

Properties and qualities

Slope: 0 to 1 percent
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: Frequent
Frequency of ponding: Frequent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 5.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7w Forage suitability group: Forage suitability group not assigned (G154XB999FL) Other vegetative classification: Freshwater Marshes and Ponds (R154XY010FL) Hydric soil rating: Yes

Description of Organic Soil

Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Organic material

Typical profile

Oe - 0 to 80 inches: mucky peat

Properties and qualities

Slope: 0 to 1 percent
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: About 0 inches

Frequency of flooding: Frequent
Frequency of ponding: Frequent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very high (about 13.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7w Forage suitability group: Forage suitability group not assigned (G154XB999FL) Other vegetative classification: Freshwater Marshes and Ponds (R154XY010FL) Hydric soil rating: Yes

45—Tavares sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2v173 Elevation: 0 to 180 feet Mean annual precipitation: 44 to 56 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 300 to 365 days Farmland classification: Farmland of unique importance

Map Unit Composition

Tavares and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Tavares

Setting

Landform: Ridges on marine terraces, knolls on marine terraces, flats on marine terraces

Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Interfluve, base slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Eolian or sandy marine deposits

Typical profile

A - 0 to 7 inches: sand

C - 7 to 80 inches: sand

Properties and qualities

Slope: 0 to 5 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Moderately well drained Runoff class: Negligible Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 50.02 in/hr) Depth to water table: About 42 to 72 inches Frequency of flooding: None Frequency of ponding: None Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 4.0 Available water storage in profile: Very low (about 1.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Forage suitability group: Sandy soils on rises, knolls, and ridges of mesic uplands (G154XB121FL) Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Minor Components

Apopka

Percent of map unit: 6 percent Landform: Knolls on marine terraces, ridges on marine terraces Landform position (two-dimensional): Shoulder, summit, footslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Candler

Percent of map unit: 4 percent Landform: Knolls on marine terraces, ridges on marine terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope, interfluve, tread Down-slope shape: Convex Across-slope shape: Convex Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R155XY002FL), Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Adamsville

Percent of map unit: 3 percent Landform: Knolls on flatwoods, rises on flatwoods Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve, rise, talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Upland Hardwood Hammock (R155XY008FL), Upland Hardwood Hammock (R154XY008FL) Hydric soil rating: No

Zolfo

Percent of map unit: 2 percent Landform: Flats on marine terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

46—Orsino sand

Map Unit Setting

National map unit symbol: 1nrwm Elevation: 20 to 150 feet Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 285 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Orsino and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Orsino

Setting

Landform: Ridges on marine terraces, knolls on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Parent material: Eolian or sandy marine deposits

Typical profile

A - 0 to 3 inches: sand *E* - 3 to 22 inches: sand *E* and *B*h - 22 to 80 inches: sand

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Very high (19.98 to 50.02 in/hr)
Depth to water table: About 24 to 42 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A *Forage suitability group:* Sandy soils on rises, knolls, and ridges of mesic uplands (G154XB121FL) *Hydric soil rating:* No

Minor Components

Apopka

Percent of map unit: 10 percent Landform: Ridges on marine terraces, knolls on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

50—Borrow Pits

Map Unit Setting

National map unit symbol: 1v082 Mean annual precipitation: 46 to 54 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 340 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Borrow pits: 70 percent *Minor components:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Borrow Pits

Setting

Landform: Marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Altered marine deposits

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Forage suitability group: Forage suitability group not assigned (G154XB999FL) Hydric soil rating: Unranked

Minor Components

Aquents

Percent of map unit: 30 percent Landform: Depressions Hydric soil rating: Yes

99—Water

Map Unit Composition

Water: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Orange County, Florida

1—Arents, nearly level

Map Unit Setting

National map unit symbol: bv78 Mean annual precipitation: 45 to 53 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Arents and similar soils: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Arents

Setting

Landform: Rises on marine terraces Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Linear Parent material: Altered marine deposits

Typical profile

AC - 0 to 80 inches: sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Very high (19.98 to 50.02 in/hr)
Depth to water table: About 24 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Forage suitability group: Forage suitability group not assigned (G155XB999FL) Hydric soil rating: No

3—Basinger fine sand, frequently ponded, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 2v16v Elevation: 0 to 70 feet Mean annual precipitation: 43 to 55 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Basinger and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Basinger

Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave, linear Across-slope shape: Concave, linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 5 inches: fine sand E - 5 to 14 inches: fine sand Bh/E - 14 to 36 inches: fine sand Cg - 36 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 5.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: A/D *Forage suitability group:* Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) *Hydric soil rating:* Yes

Minor Components

Smyrna

Percent of map unit: 5 percent Landform: — error in exists on — Landform position (three-dimensional): Tread, talf Down-slope shape: Convex, linear Across-slope shape: Linear Other vegetative classification: South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

Samsula

Percent of map unit: 3 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Other vegetative classification: Freshwater Marshes and Ponds (R155XY010FL) Hydric soil rating: Yes

Floridana

Percent of map unit: 2 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Linear, concave Across-slope shape: Linear, concave Other vegetative classification: Freshwater Marshes and Ponds (R155XY010FL) Hydric soil rating: Yes

4—Candler fine sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2shkf Elevation: 10 to 260 feet Mean annual precipitation: 47 to 56 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 280 to 365 days Farmland classification: Farmland of unique importance

Map Unit Composition

Candler and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Candler

Setting

Landform: Knolls on marine terraces, ridges on marine terraces Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve, tread Down-slope shape: Linear, convex Across-slope shape: Linear, convex, concave Parent material: Eolian deposits and/or sandy and loamy marine deposits

Typical profile

Ap - 0 to 5 inches: fine sand E - 5 to 74 inches: fine sand E and Bt - 74 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4s
Hydrologic Soil Group: A
Forage suitability group: Sandy soils on ridges and dunes of xeric uplands (G154XB111FL)
Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL)
Hydric soil rating: No

Minor Components

Tavares

Percent of map unit: 4 percent Landform: Ridges on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Concave, convex Across-slope shape: Concave, linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Adamsville

Percent of map unit: 3 percent Landform: Flats on marine terraces, rises on marine terraces Landform position (three-dimensional): Interfluve, talf Down-slope shape: Convex, concave Across-slope shape: Linear, concave *Other vegetative classification:* South Florida Flatwoods (R154XY003FL) *Hydric soil rating:* No

Millhopper

Percent of map unit: 3 percent Landform: Flats on marine terraces, rises on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex, linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

5—Candler fine sand, 5 to 12 percent slopes

Map Unit Setting

National map unit symbol: bv8p Elevation: 20 to 150 feet Mean annual precipitation: 45 to 53 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Farmland of unique importance

Map Unit Composition

Candler and similar soils: 94 percent Minor components: 6 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Candler

Setting

Landform: Ridges on marine terraces, knolls on marine terraces Landform position (three-dimensional): Side slope, interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Eolian deposits and/or sandy and loamy marine deposits

Typical profile

A - 0 to 4 inches: fine sand E - 4 to 61 inches: fine sand E and B - 61 to 80 inches: fine sand

Properties and qualities

Slope: 5 to 12 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Forage suitability group: Sandy soils on strongly sloping to steep side slopes of xeric uplands (G155XB113FL) Hydric soil rating: No

Minor Components

Millhopper

Percent of map unit: 2 percent Landform: Knolls on marine terraces, rises on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Tavares

Percent of map unit: 2 percent Landform: Ridges on marine terraces, flats on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Apopka

Percent of map unit: 2 percent Landform: Ridges on marine terraces, knolls on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

6—Candler-Apopka fine sands, 5 to 12 percent slopes

Map Unit Setting

National map unit symbol: bv8x Elevation: 20 to 160 feet Mean annual precipitation: 45 to 53 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Candler and similar soils: 66 percent

Apopka and similar soils: 31 percent Minor components: 3 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Candler

Setting

Landform: Ridges on marine terraces, knolls on marine terraces Landform position (three-dimensional): Side slope, interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Eolian deposits and/or sandy and loamy marine deposits

Typical profile

A - 0 to 6 inches: fine sand E - 6 to 69 inches: fine sand E and B - 69 to 80 inches: fine sand

Properties and qualities

Slope: 5 to 12 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7s
Hydrologic Soil Group: A
Forage suitability group: Sandy soils on strongly sloping to steep side slopes of xeric uplands (G155XB113FL)
Hydric soil rating: No

Description of Apopka

Setting

Landform: Knolls on marine terraces, ridges on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Eolian deposits and/or sandy and loamy marine deposits

Typical profile

A - 0 to 5 inches: fine sand E - 5 to 69 inches: fine sand Bt - 69 to 80 inches: sandy clay loam

Properties and qualities

Slope: 5 to 12 percent *Depth to restrictive feature:* More than 80 inches

Custom Soil Resource Report

Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4s Hydrologic Soil Group: A Forage suitability group: Sandy soils on strongly sloping to steep side slopes of xeric uplands (G155XB113FL) Hydric soil rating: No

Minor Components

Lochloosa

Percent of map unit: 2 percent Landform: Rises on marine terraces Landform position (three-dimensional): Interfluve, rise Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Tavares

Percent of map unit: 1 percent Landform: Flats on marine terraces, ridges on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

20—Immokalee fine sand

Map Unit Setting

National map unit symbol: bv7n Mean annual precipitation: 45 to 53 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Immokalee, non-hydric, and similar soils: 82 percent

Immokalee, hydric, and similar soils: 10 percent *Minor components:* 8 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Immokalee, Non-hydric

Setting

Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 5 inches: fine sand E - 5 to 35 inches: fine sand Bh - 35 to 67 inches: fine sand C - 67 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 6 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Moderate (about 6.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4w
Hydrologic Soil Group: B/D
Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Hydric soil rating: No

Description of Immokalee, Hydric

Setting

Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Concave Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 5 inches: fine sand E - 5 to 35 inches: fine sand Bh - 35 to 67 inches: fine sand C - 67 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Moderate (about 6.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: B/D Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) Hydric soil rating: Yes

Minor Components

Wabasso

Percent of map unit: 4 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Pineda

Percent of map unit: 4 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

33—Pits

Map Unit Setting

National map unit symbol: bv83 Mean annual precipitation: 45 to 53 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Pits: 70 percent *Minor components:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Pits

Setting

Landform: Marine terraces Landform position (three-dimensional): Interfluve, dip Down-slope shape: Linear Across-slope shape: Linear

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6w Forage suitability group: Forage suitability group not assigned (G155XB999FL) Hydric soil rating: Unranked

Minor Components

Aquents

Percent of map unit: 30 percent Landform: Depressions Hydric soil rating: Yes

34—Pomello fine sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2v16y Elevation: 0 to 180 feet Mean annual precipitation: 44 to 52 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 342 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Pomello and similar soils: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pomello

Setting

Landform: Knolls on marine terraces, ridges on marine terraces Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Interfluve, riser Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 4 inches: fine sand E - 4 to 47 inches: fine sand Bh - 47 to 58 inches: fine sand Bw - 58 to 65 inches: fine sand C - 65 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: About 24 to 42 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 5.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6s
Hydrologic Soil Group: A
Forage suitability group: Sandy soils on rises and knolls of mesic uplands (G155XB131FL)
Other vegetative classification: Sand Pine Scrub (R155XY001FL)
Hydric soil rating: No

Minor Components

Smyrna

Percent of map unit: 3 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Tavares

Percent of map unit: 1 percent Landform: Ridges on marine terraces, flats on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Ecological site: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Bulow

Percent of map unit: 1 percent Landform: Ridges on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

37—St. Johns fine sand

Map Unit Setting

National map unit symbol: bv87 Elevation: 30 to 150 feet Mean annual precipitation: 45 to 53 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

St. johns, non-hydric, and similar soils: 60 percent *St. johns, hydric, and similar soils:* 30 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of St. Johns, Non-hydric

Setting

Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 12 inches: fine sand E - 12 to 24 inches: fine sand Bh - 24 to 44 inches: fine sand C - 44 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 1.98 in/hr)
Depth to water table: About 6 to 12 inches
Frequency of flooding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Moderate (about 7.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: B/D
Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Hydric soil rating: No

Description of St. Johns, Hydric

Setting

Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 12 inches: fine sand E - 12 to 24 inches: fine sand Bh - 24 to 44 inches: fine sand C - 44 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 1.98 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Moderate (about 7.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: B/D Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) Hydric soil rating: Yes

Minor Components

Immokalee, non-hydric

Percent of map unit: 5 percent Landform: Flatwoods on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Wabasso

Percent of map unit: 5 percent *Landform:* Flatwoods on marine terraces *Landform position (three-dimensional):* Talf *Down-slope shape:* Convex *Across-slope shape:* Linear *Hydric soil rating:* No

41—Samsula-Hontoon-Basinger association, depressional

Map Unit Setting

National map unit symbol: bv8d Mean annual precipitation: 45 to 53 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Samsula and similar soils: 47 percent Hontoon and similar soils: 31 percent Basinger and similar soils: 14 percent Minor components: 8 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Samsula

Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Herbaceous organic material over sandy marine deposits

Typical profile

Oa - 0 to 34 inches: muck C - 34 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Moderate (about 8.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7w Hydrologic Soil Group: A/D Forage suitability group: Organic soils in depressions and on flood plains (G155XB645FL) Hydric soil rating: Yes

Description of Hontoon

Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Herbaceous organic material

Typical profile

Oa - 0 to 80 inches: muck

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very high (about 23.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified
 Land capability classification (nonirrigated): 7w
 Hydrologic Soil Group: A/D
 Forage suitability group: Organic soils in depressions and on flood plains (G155XB645FL)
 Hydric soil rating: Yes

Description of Basinger

Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy marine deposits

Typical profile

A - 0 to 6 inches: fine sand E - 6 to 25 inches: fine sand B/E - 25 to 35 inches: fine sand C - 35 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 1 percent

Custom Soil Resource Report

Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 5.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7w Hydrologic Soil Group: A/D Forage suitability group: Sandy soils on stream terraces, flood plains, or in depressions (G155XB145FL) Hydric soil rating: Yes

Minor Components

Holopaw

Percent of map unit: 4 percent Landform: Flood plains on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

Ona

Percent of map unit: 4 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

42—Sanibel muck

Map Unit Setting

National map unit symbol: bv8f Mean annual precipitation: 45 to 53 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Sanibel, undrained, and similar soils: 65 percent Sanibel, drained, and similar soils: 25 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sanibel, Undrained

Setting

Landform: Marshes on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Thin organic material over sandy marine deposits

Typical profile

Oa - 0 to 11 inches: muck *A - 11 to 15 inches:* fine sand *C - 15 to 80 inches:* fine sand

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified
 Land capability classification (nonirrigated): 7w
 Hydrologic Soil Group: A/D
 Forage suitability group: Organic soils in depressions and on flood plains (G155XB645FL)
 Hydric soil rating: Yes

Description of Sanibel, Drained

Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Thin organic material over sandy marine deposits

Typical profile

Oa - 0 to 11 inches: muck *A - 11 to 15 inches:* fine sand *C - 15 to 80 inches:* fine sand

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 0 to 24 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified
 Land capability classification (nonirrigated): 3w
 Hydrologic Soil Group: A/D
 Forage suitability group: Organic soils in depressions and on flood plains (G155XB645FL)
 Hydric soil rating: Yes

Minor Components

Hontoon, undrained

Percent of map unit: 5 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Samsula

Percent of map unit: 5 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

43—Seffner fine sand, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2v17t Elevation: 30 to 160 feet Mean annual precipitation: 44 to 56 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 300 to 365 days Farmland classification: Farmland of unique importance

Map Unit Composition

Seffner and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Seffner

Setting

Landform: Flats on marine terraces, rises on marine terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Interfluve, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 12 inches: fine sand *AC* - 12 to 18 inches: fine sand *C* - 18 to 33 inches: fine sand *Cg* - 33 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat poorly drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: About 18 to 42 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: A/D Forage suitability group: Sandy soils on rises and knolls of mesic uplands (G154XB131FL) Other vegetative classification: Upland Hardwood Hammock (R154XY008FL) Hydric soil rating: No

Minor Components

Ona, non-hydric

Percent of map unit: 4 percent Landform: Flats on marine terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Interfluve, talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: South Florida Flatwoods (R154XY003FL) Hydric soil rating: No

Sparr

Percent of map unit: 3 percent Landform: Rises on marine terraces, knolls on marine terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve, rise Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Upland Hardwood Hammock (R154XY008FL) Hydric soil rating: No

Pompano, hydric

Percent of map unit: 3 percent Landform: Flats on marine terraces, drainageways on marine terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Interfluve, talf Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: Slough (R154XY011FL) Hydric soil rating: Yes

44—Smyrna-Smyrna, wet, fine sand, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2v171 Elevation: 0 to 150 feet Mean annual precipitation: 38 to 62 inches Mean annual air temperature: 68 to 77 degrees F Frost-free period: 300 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Smyrna, non-hydric, and similar soils: 76 percent *Smyrna, hydric, and similar soils:* 20 percent *Minor components:* 4 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Smyrna, Non-hydric

Setting

Landform: Flats on marine terraces, flatwoods on marine terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 4 inches: fine sand *E - 4 to 17 inches:* fine sand

Bh - 17 to 27 inches: loamy fine sand

C - 27 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 3.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: A/D Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL) Other vegetative classification: South Florida Flatwoods (R155XY003FL) Hydric soil rating: No

Description of Smyrna, Hydric

Setting

Landform: Flats on marine terraces, flatwoods on marine terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 4 inches: fine sand E - 4 to 17 inches: fine sand Bh - 17 to 27 inches: loamy fine sand C - 27 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 3.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4w
Hydrologic Soil Group: A/D
Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G155XB141FL)
Other vegetative classification: South Florida Flatwoods (R155XY003FL)
Hydric soil rating: Yes

Minor Components

Basinger, depressional

Percent of map unit: 2 percent Landform: Depressions on marine terraces Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Pomona, non-hydric

Percent of map unit: 1 percent Landform: Flatwoods on marine terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Eaugallie, hydric

Percent of map unit: 1 percent Landform: Flatwoods on marine terraces, flats on marine terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: South Florida Flatwoods (R154XY003FL) Hydric soil rating: Yes

46—Tavares fine sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2w0pz Elevation: 30 to 160 feet Mean annual precipitation: 44 to 56 inches Mean annual air temperature: 68 to 75 degrees F Frost-free period: 290 to 365 days Farmland classification: Farmland of unique importance

Map Unit Composition

Tavares and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tavares

Setting

Landform: Knolls on marine terraces, ridges on marine terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve, side slope, tread, rise Down-slope shape: Linear, convex Across-slope shape: Linear Parent material: Eolian or sandy marine deposits

Typical profile

A - 0 to 5 inches: fine sand *C - 5 to 80 inches:* fine sand

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 42 to 72 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3s
Hydrologic Soil Group: A
Forage suitability group: Sandy soils on rises, knolls, and ridges of mesic uplands (G154XB121FL)
Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL)
Hydric soil rating: No

Minor Components

Candler

Percent of map unit: 5 percent Landform: Knolls on marine terraces, ridges on marine terraces Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve, tread Down-slope shape: Linear, convex Across-slope shape: Linear, convex, concave Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Apopka

Percent of map unit: 4 percent Landform: Ridges on marine terraces, knolls on marine terraces Landform position (two-dimensional): Summit, shoulder, footslope Landform position (three-dimensional): Crest, side slope, nose slope Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

Narcoossee

Percent of map unit: 3 percent Landform: Knolls on marine terraces, rises on marine terraces Landform position (three-dimensional): Interfluve, rise Down-slope shape: Linear, convex Across-slope shape: Linear Other vegetative classification: Upland Hardwood Hammock (R154XY008FL) Hydric soil rating: No

Zolfo

Percent of map unit: 3 percent Landform: Rises on marine terraces, knolls on marine terraces Landform position (three-dimensional): Interfluve, rise Down-slope shape: Convex, linear Across-slope shape: Linear Other vegetative classification: North Florida Flatwoods (R154XY004FL) Hydric soil rating: No

47—Tavares-Millhopper complex, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2w4gz Elevation: 20 to 150 feet Mean annual precipitation: 45 to 53 inches Mean annual air temperature: 70 to 77 degrees F Frost-free period: 350 to 365 days Farmland classification: Farmland of unique importance

Map Unit Composition

Tavares and similar soils: 63 percent Milhopper and similar soils: 32 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tavares

Setting

Landform: Flats on marine terraces, ridges on marine terraces *Landform position (two-dimensional):* Shoulder *Landform position (three-dimensional):* Interfluve, rise *Down-slope shape:* Convex *Across-slope shape:* Linear *Parent material:* Eolian or sandy marine deposits

Typical profile

A - 0 to 6 inches: fine sand C - 6 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 42 to 72 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Very low (about 2.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Forage suitability group: Sandy soils on rises, knolls, and ridges of mesic uplands (G154XB121FL) Hydric soil rating: No

Description of Millhopper

Setting

Landform: Rises on marine terraces, knolls on marine terraces Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve, riser Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy and loamy marine deposits

Typical profile

A - 0 to 6 inches: fine sand E - 6 to 64 inches: fine sand Bt - 64 to 76 inches: sandy loam Btg - 76 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 1.98 in/hr)
Depth to water table: About 42 to 60 inches
Frequency of flooding: None
Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: Low (about 4.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Forage suitability group: Sandy soils on rises, knolls, and ridges of mesic uplands (G154XB121FL) Hydric soil rating: No

Minor Components

Candler

Percent of map unit: 3 percent Landform: Knolls on marine terraces, ridges on marine terraces Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Convex Hydric soil rating: No

Astatula

Percent of map unit: 2 percent Landform: Hills on marine terraces, ridges on marine terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve, side slope, tread Down-slope shape: Convex, linear Across-slope shape: Convex Other vegetative classification: Longleaf Pine-Turkey Oak Hills (R154XY002FL) Hydric soil rating: No

99—Water

Map Unit Composition

Water: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

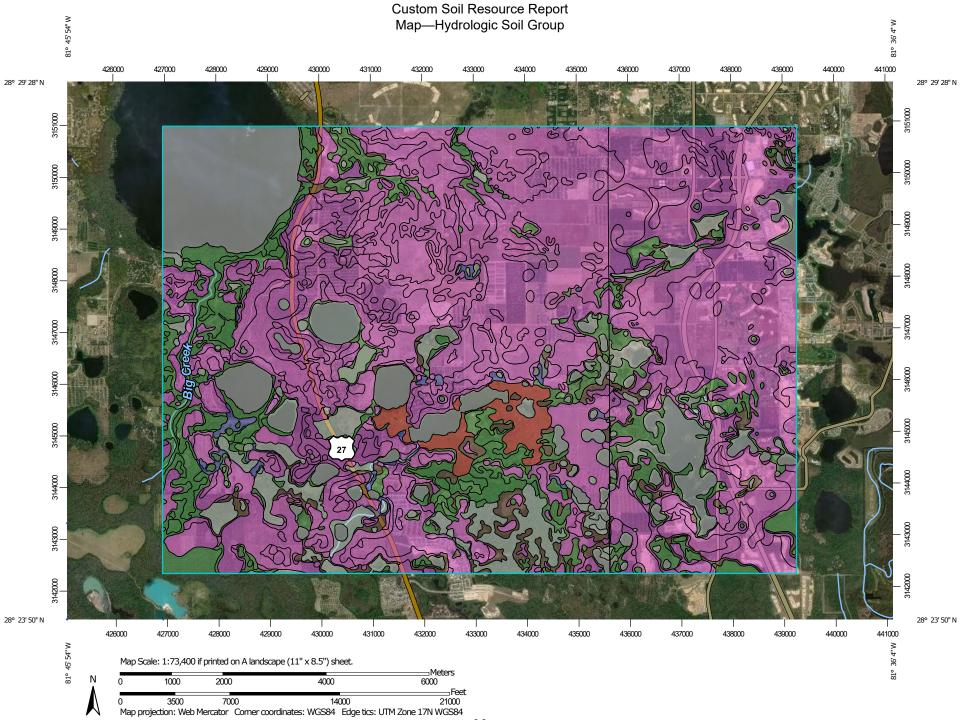
Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

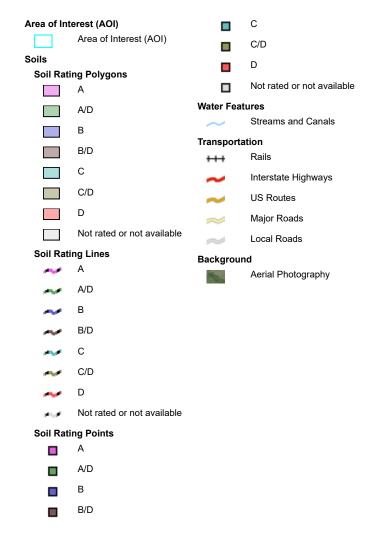
Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:


Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lake County Area, Florida Survey Area Data: Version 18, Sep 13, 2018

Soil Survey Area: Orange County, Florida Survey Area Data: Version 15, Sep 13, 2018

Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different scales, with a different land use in mind, at different times, or at different levels of detail. This may result in map unit symbols, soil properties, and interpretations that do not completely agree across soil survey area boundaries.

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Dec 8, 2010—Nov 26, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
4	Anclote and Myakka soils	A/D	738.3	2.8%
5	Apopka sand, 0 to 5 percent slopes	A	41.6	0.2%
6	Apopka sand, 5 to 12 percent slopes	A	41.4	0.2%
8	Candler sand, 0 to 5 percent slopes	A	5,851.8	22.1%
9	Candler sand, 5 to 12 percent slopes	A	2,822.8	10.7%
10	Candler sand, 12 to 40 percent slopes	A	261.4	1.0%
12	Cassia sand	A/D	45.0	0.2%
17	Arents	В	173.7	0.7%
20	Immokalee sand	B/D	647.4	2.4%
21	Lake sand, 0 to 5 percent slopes	A	341.5	1.3%
22	Lake sand, 5 to 12 percent slopes	A	182.4	0.7%
24	Kendrick sand, 0 to 5 percent slopes	A	36.5	0.1%
25	Kendrick sand, 5 to 8 percent slopes	A	16.2	0.1%
28	Myakka-Myakka, wet, sands, 0 to 2 percent slopes	A/D	977.5	3.7%
30	Lochloosa sand	В	7.3	0.0%
32	Oklawaha muck	D	446.8	1.7%
33	Ona-Ona, wet, fine sand, 0 to 2 percent slopes	B/D	7.5	0.0%
34	Orlando fine sand, 0 to 5 percent slopes	A	2.8	0.0%
35	Paola sand, 0 to 5 percent slopes	A	24.8	0.1%
37	Ellzey sand	A/D	6.5	0.0%
38	Placid sand, frequently ponded, 0 to 2 percent slopes	A/D	143.7	0.5%
39	Seffner sand	A/D	26.3	0.1%
40	Placid and Myakka sands, depressional	A/D	813.9	3.1%
41	Pomello sand, 0 to 5 percent slopes	A	279.8	1.1%
42	Pompano sand	A/D	55.1	0.2%

99

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
43	St. Lucie sand, 0 to 8 percent slopes	A	39.9	0.2%
44	Swamp		935.6	3.5%
45	Tavares sand, 0 to 5 percent slopes	A	623.9	2.4%
46	Orsino sand	A	19.4	0.1%
50	Borrow Pits		7.6	0.0%
99	Water		3,002.4	11.4%
Subtotals for Soil Survey Area			18,620.7	70.4%
Totals for Area of Interest			26,438.6	100.0%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Arents, nearly level	A	1.0	0.0%
3	Basinger fine sand, frequently ponded, 0 to 1 percent slopes	A/D	681.0	2.6%
4	Candler fine sand, 0 to 5 percent slopes	A	2,946.5	11.1%
5	Candler fine sand, 5 to 12 percent slopes	A	2,163.5	8.2%
6	Candler-Apopka fine sands, 5 to 12 percent slopes	A	69.2	0.3%
20	Immokalee fine sand	B/D	199.8	0.8%
33	Pits		2.1	0.0%
34	Pomello fine sand, 0 to 5 percent slopes	A	113.6	0.4%
37	St. Johns fine sand	B/D	44.2	0.2%
41	Samsula-Hontoon- Basinger association, depressional	A/D	98.5	0.4%
42	Sanibel muck	A/D	91.8	0.3%
43	Seffner fine sand, 0 to 2 percent slopes	A/D	2.7	0.0%
44	Smyrna-Smyrna, wet, fine sand, 0 to 2 percent slopes	A/D	12.7	0.0%
46	Tavares fine sand, 0 to 5 percent slopes	A	202.0	0.8%
47	Tavares-Millhopper complex, 0 to 5 percent slopes	A	238.1	0.9%
99	Water		951.4	3.6%
Subtotals for Soil Survey Area			7,818.0	29.6%
Totals for Area of Interest			26,438.6	100.0%

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

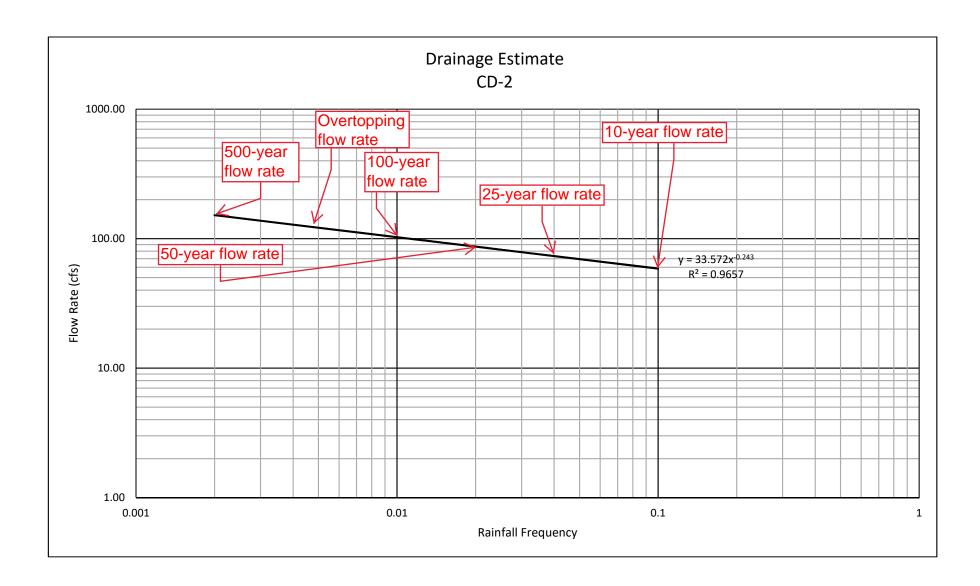
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

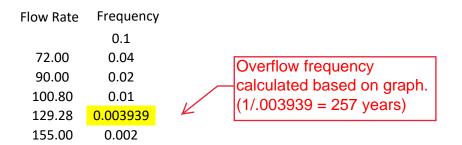
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

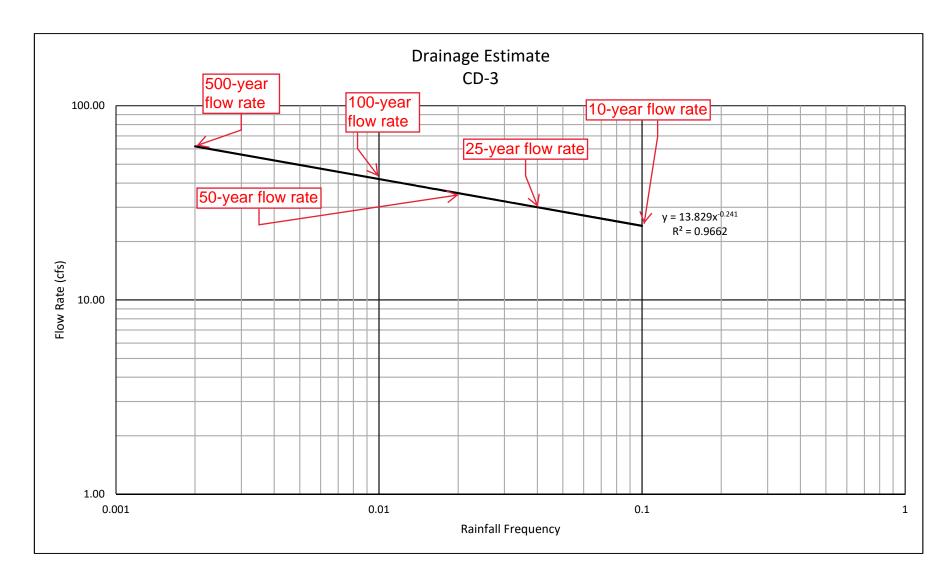
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

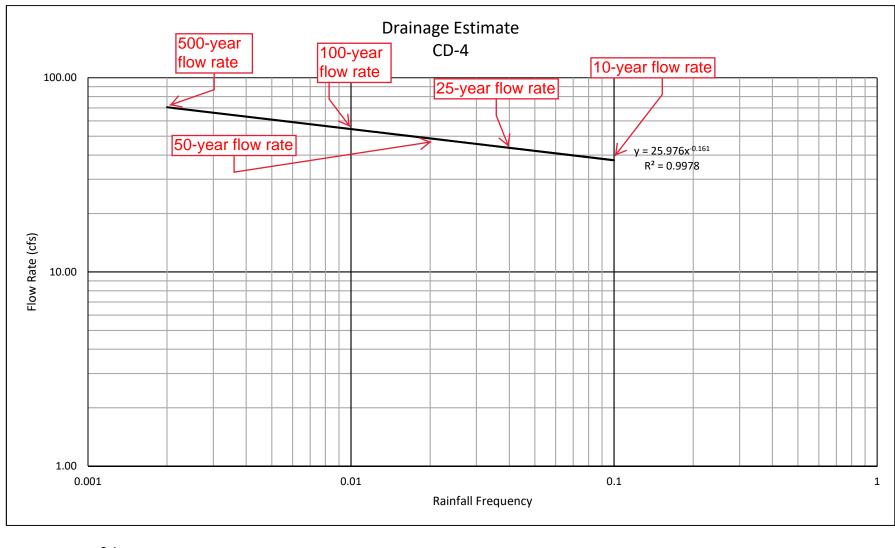

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

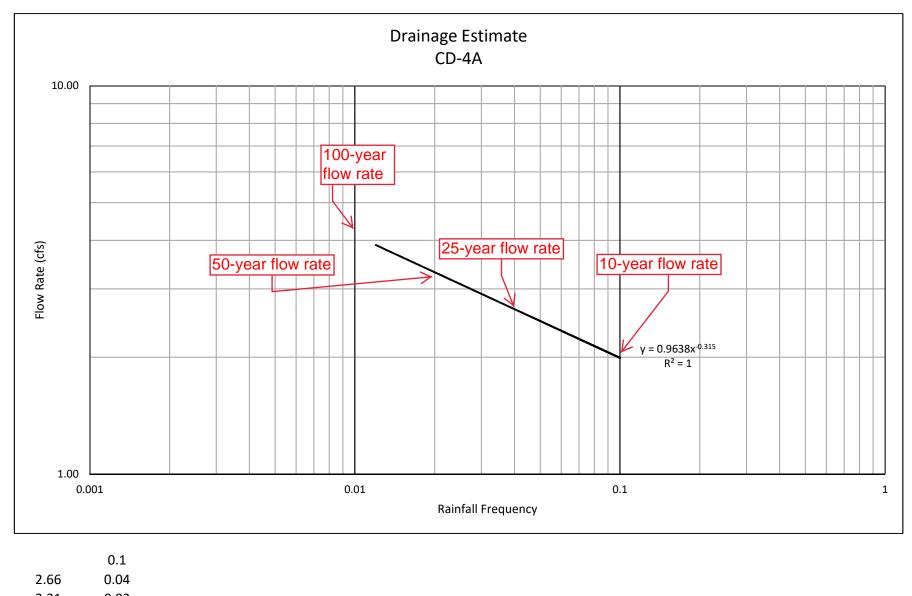

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084 United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

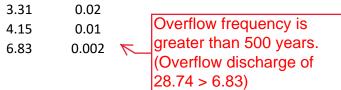

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

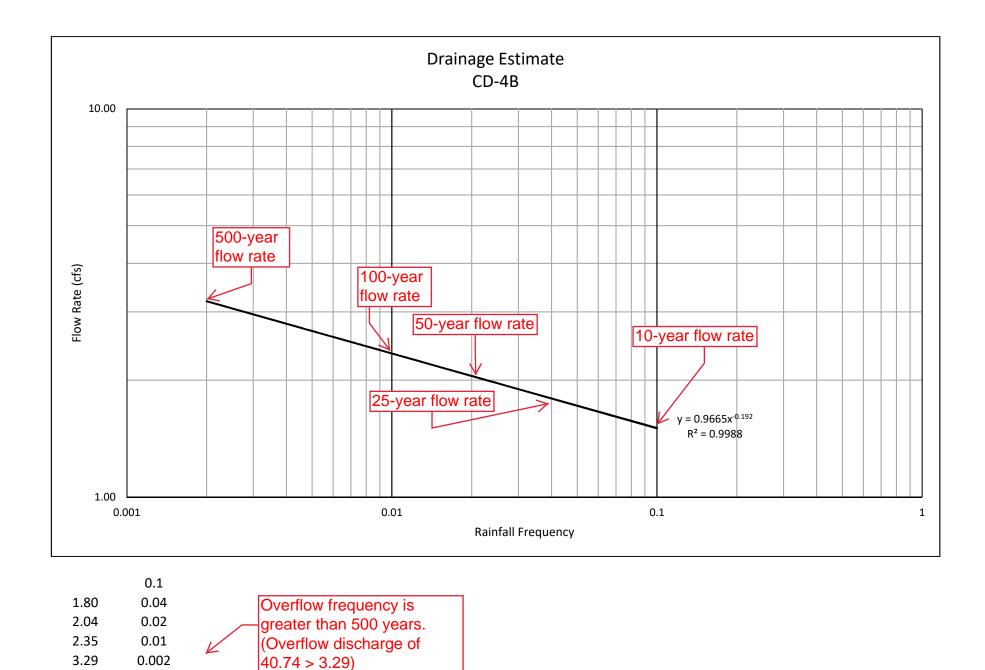
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

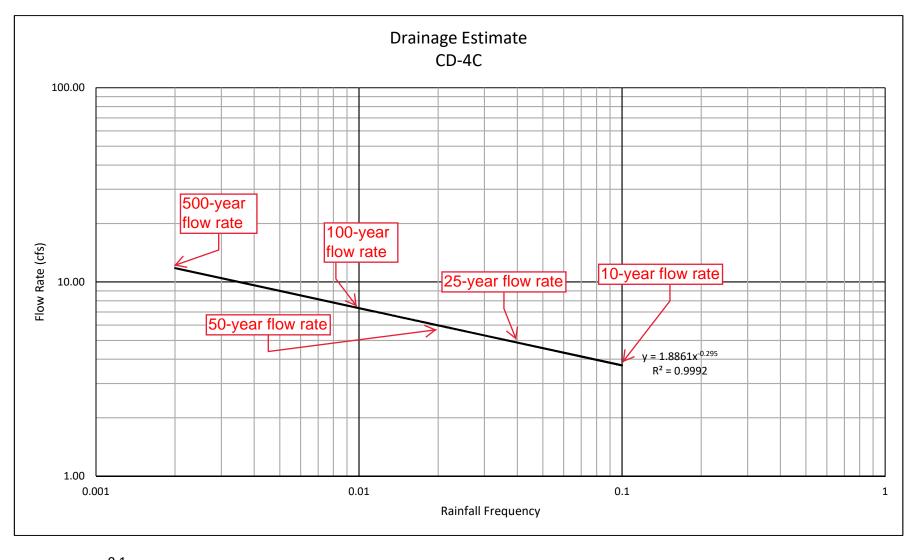
Appendix D – Cross Drain Rational Method Analysis



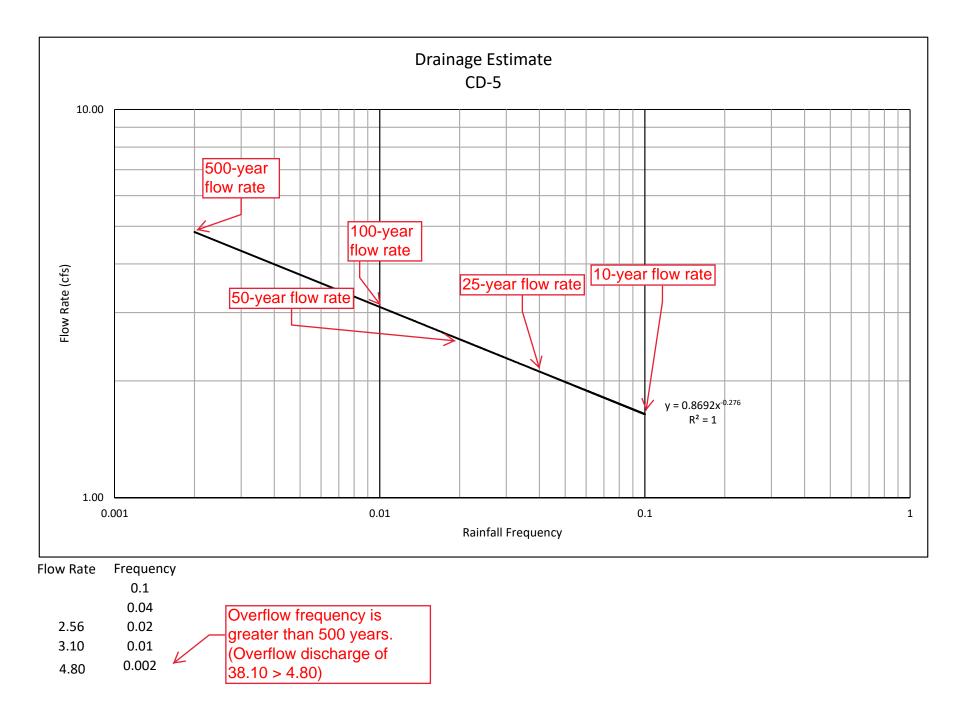


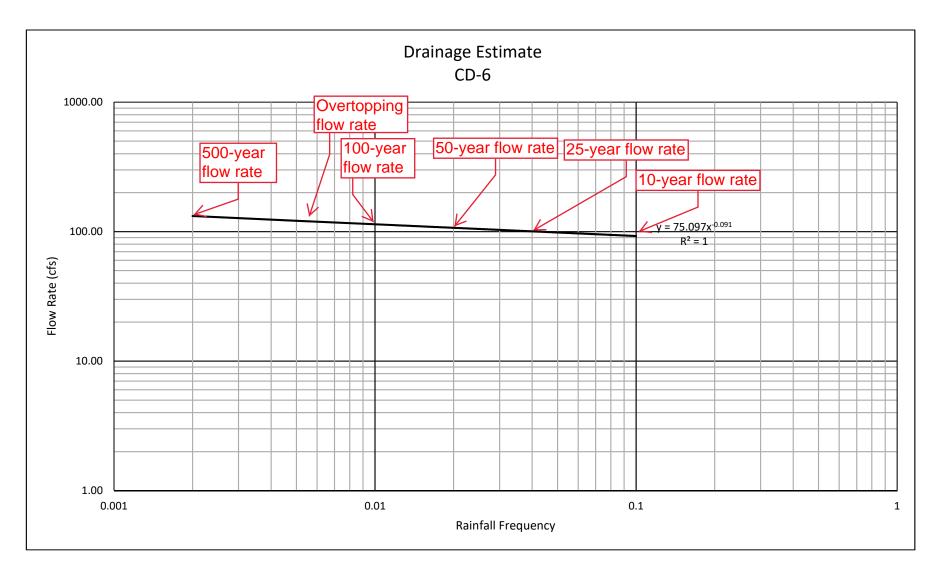

Flow Rate Frequency

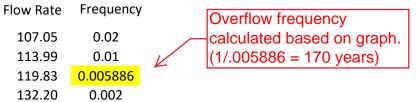


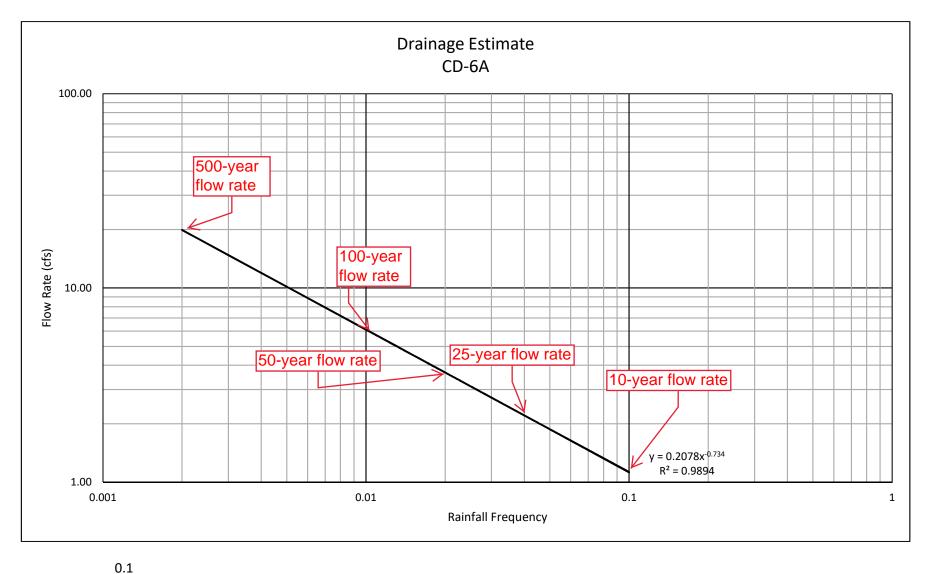


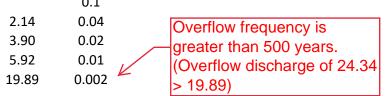
	0.1		
43.71	0.04		Overflow frequency is greater than 500 years. (Overflow discharge of
48.42	0.02		greater than 500 years.
54.62	0.01	K	(Overflow discharge of
70.65	0.002		86.07 > 70.65)

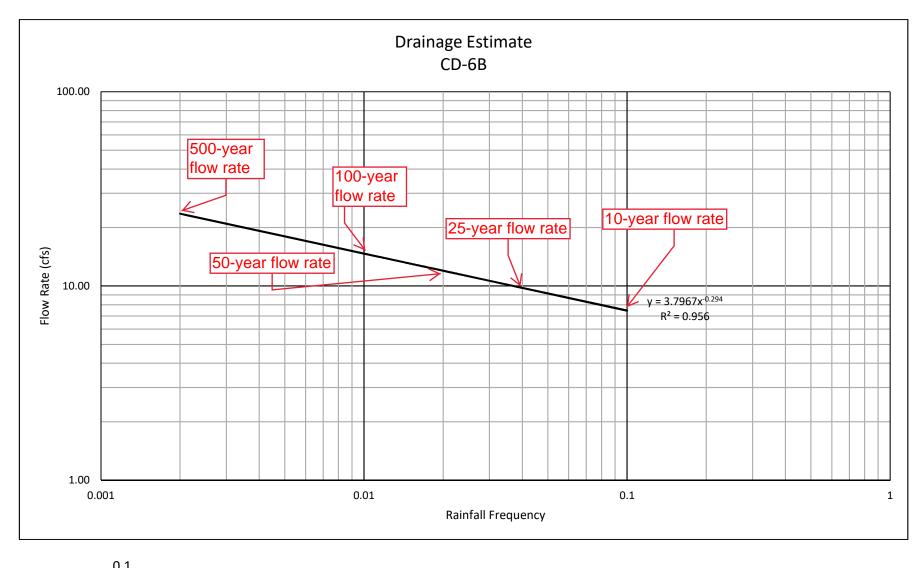


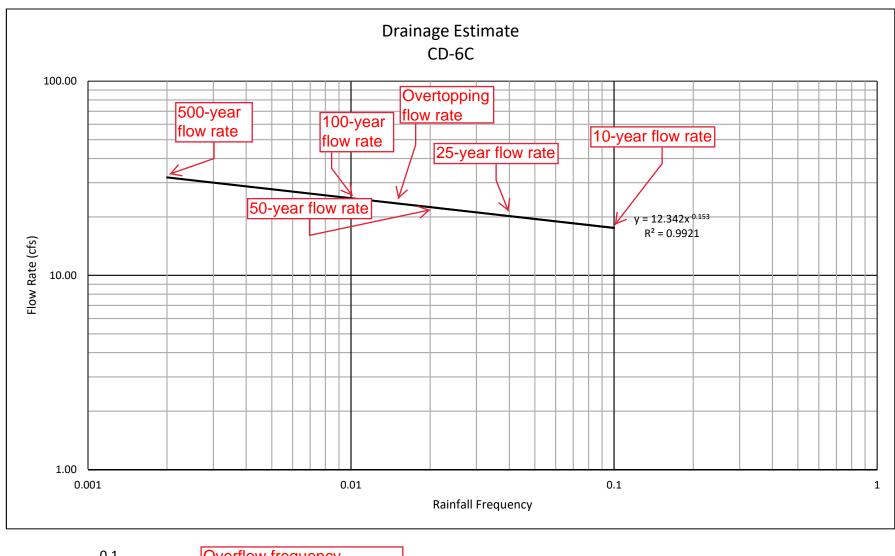


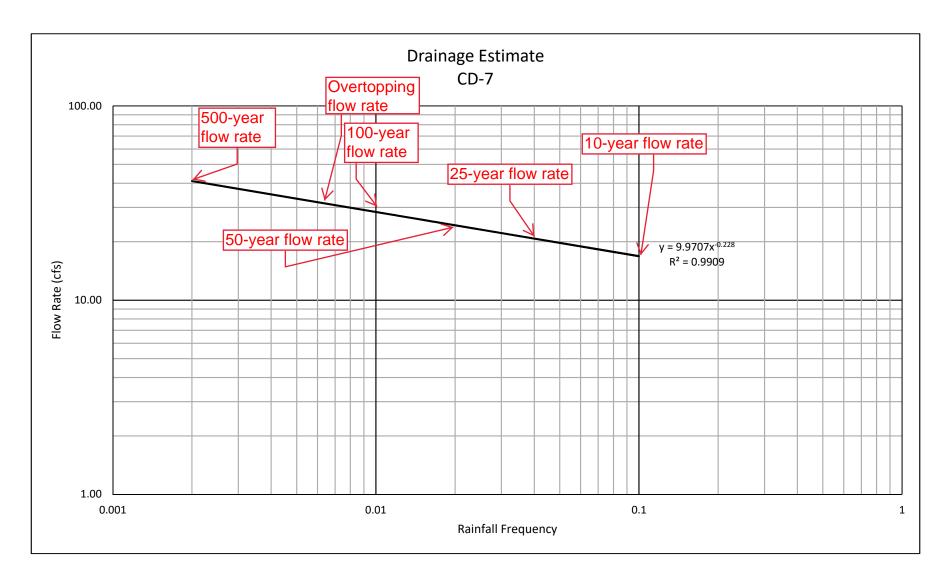




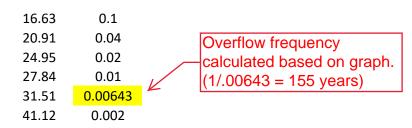

	0.1	
4.89	0.04	Overflow frequency is greater than 500 years.
5.94	0.02	greater than 500 years.
7.36	0.01	(Overflow discharge of
11.80	0.002	37.23 > 11.80)

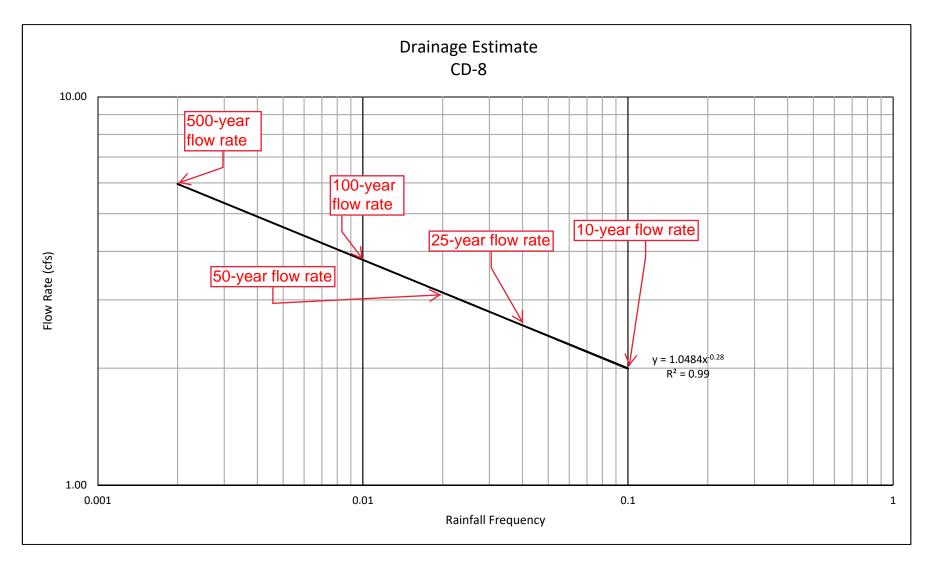




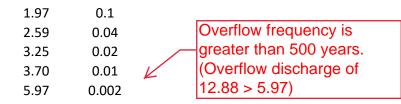


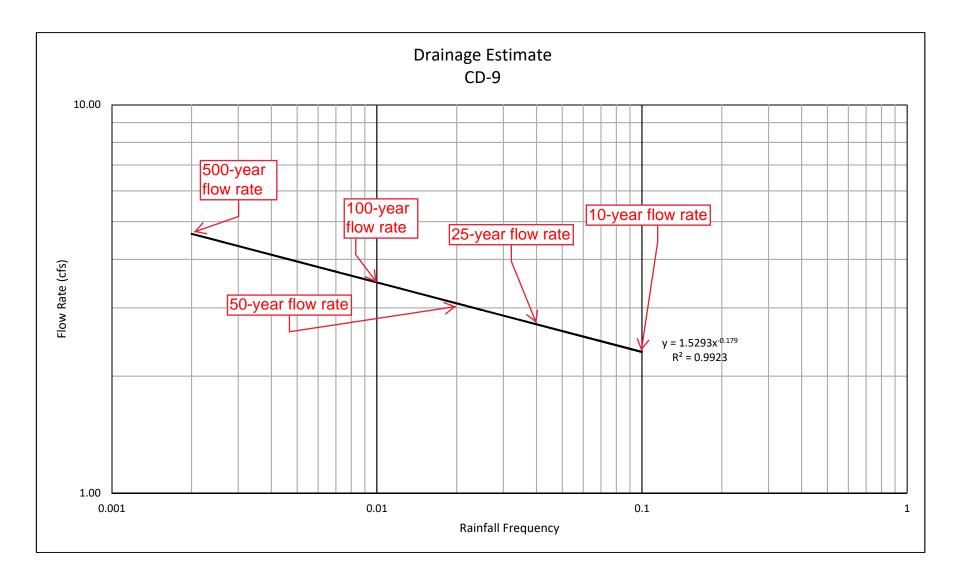
	0.1	
9.53	0.04	Overflow frequency is
12.60	0.02	Overflow frequency is
14.32	0.01	greater than 500 years.
23.60	0.002 🖌	(Overflow discharge of
23.00	0.002	105.31 > 23.60)

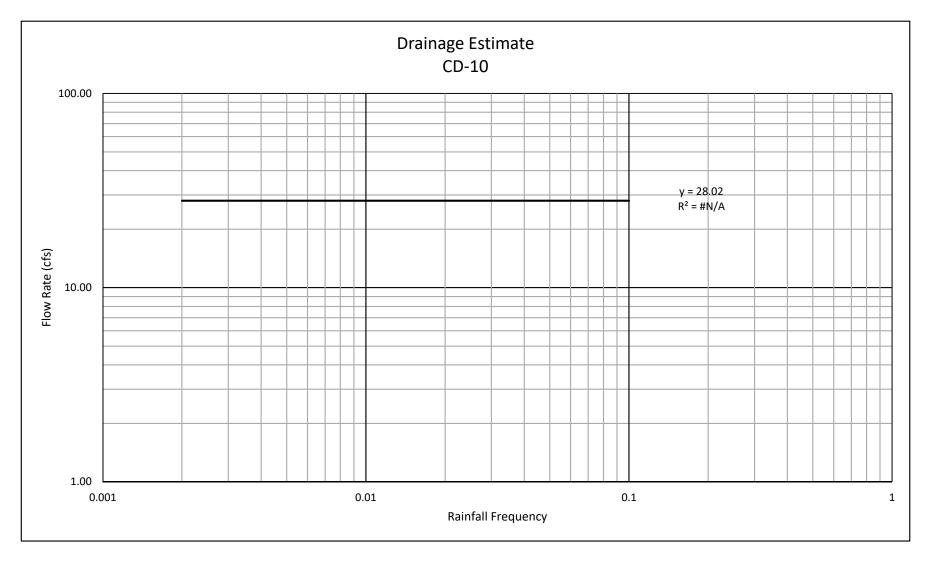



	0.1		Overflow frequency
20.08	0.04		calculated based on graph.
22.72	0.02	K	calculated based on graph. (1/.012991 = 77 years)
24.00	0.012991	-	
24.82	0.01		
31.96	0.002		

		CD-7 Rational M	ethod		
	Run	off Coefficient Ca	lculations		
Land Use	Area - A	Product			
			Coefficient	(acre)	
farmland	2-7%	79	0.25	9.80	2.45
woodlands	2-7%	21	0.2	2.60	0.52
			Total	12.40	2.97
			Compos	ite Coefficient	0.24
	Contributing F	low Rate for Vari	ous Storm Fre	quency	
Storm Frequency	Storm Frequency	Rainfall	Intensity - I	Adjusted Runoff	Runoff Rate
	Factor	Frequency	(in/hr)	Coefficient - C	(cfs) - Q
10-Year	1	0.1	5.6	0.24	16.63
25-Year	1.1	0.04	6.4	0.26	20.91
50-Year	1.2	0.02	7	0.29	24.95
100-Year	1.25	0.01	7.5	0.30	27.84
500-Year	-	0.002	-	-	41.12
		Rational Form	ula		
		Q = CIA			




Flow Rate Frequency


Flow Rate Frequency

Flow Rate Frequency

2.30	0.1		
2.71	0.04	Overflow frequency is greater than 500 years.	
3.15	0.02	greater than 500 years.	
3.44	0.01	(Overflow discharge of	
4.65	0.002	23.75 > 4.65)	

28.02	0.1
28.02	0.04
28.02	0.02
28.02	0.01

0.002

Appendix E – HY-8 Analysis

HY-8 Culvert Analysis Report

CD-2 Pre-Development

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 72 cfs Design Flow (50 year): 90 cfs Maximum Flow (100 year): 100.8 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-2 Pre Discharge (cfs)	Roadway Discharge (cfs)	Iterations
111.80	72.00	72.00	0.00	1
111.90	74.88	74.88	0.00	1
112.05	77.76	77.76	0.00	1
112.22	80.64	80.64	0.00	1
112.38	83.52	83.52	0.00	1
112.53	86.40	86.40	0.00	1
112.69	89.28	89.28	0.00	1
112.74	90.00	90.00	0.00	1
113.02	95.04	95.04	0.00	1
113.19	97.92	97.92	0.00	1
113.35	100.80	100.80	0.00	1
115.29	132.47	132.47	0.00	Overtopping

Table 1 - Summary of Culvert Flows at Crossing: CD-2 Pre

Site Data - CD-2 Pre

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 108.00 ft Outlet Station: 165.00 ft Outlet Elevation: 107.85 ft Number of Barrels: 1

Culvert Data Summary - CD-2 Pre

Barrel Shape: Concrete Box Barrel Span: 4.00 ft Barrel Rise: 3.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (90°) Headwall Inlet Depression: None

Tailwater Channel Data - CD-2 Pre

Tailwater Channel Option:Enter Constant Tailwater ElevationConstant Tailwater Elevation:109.82 ft (From SJRWMD permit # 90260-2)

Roadway Data for Crossing: CD-2 Pre

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 200.00 ft Crest Elevation: 115.29 ft Roadway Surface: Paved Roadway Top Width: 114.00 ft

CD-2 Post-Development

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 72 cfs Design Flow (50 year): 90 cfs Maximum Flow (100 year): 100.8 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-2 Post Discharge (cfs)	Roadway Discharge (cfs)	Iterations
111.82	72.00	72.00	0.00	1
111.96	74.88	74.88	0.00	1
112.12	77.76	77.76	0.00	1
112.29	80.64	80.64	0.00	1
112.45	83.52	83.52	0.00	1
112.62	86.40	86.40	0.00	1
112.78	89.28	89.28	0.00	1
112.83	90.00	90.00	0.00	1
113.13	95.04	95.04	0.00	1
113.30	97.92	97.92	0.00	1
113.48	100.80	100.80	0.00	1
115.29	129.28	129.28	0.00	Overtopping

Table 2 - Summary of Culvert Flows at Crossing: CD-2 Post

Site Data - CD-2 Post

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 108.00 ft Outlet Station: 190.00 ft Outlet Elevation: 107.83 ft Number of Barrels: 1

Culvert Data Summary - CD-2 Post

Barrel Shape: Concrete Box Barrel Span: 4.00 ft Barrel Rise: 3.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (90°) Headwall Inlet Depression: None

Tailwater Channel Data - CD-2 Post

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 109.82 ft (From SJRWMD permit # 90260-2)

Roadway Data for Crossing: CD-2 Post

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 200.00 ft Crest Elevation: 115.29 ft Roadway Surface: Paved Roadway Top Width: 114.00 ft

CD-3 Pre-Development

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 29.5 cfs Design Flow (50 year): 36.8 cfs Maximum Flow (100 year): 41.2 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-3 Pre Discharge (cfs)	Roadway Discharge (cfs)	Iterations
110.37	29.50	29.50	0.00	1
110.48	30.67	30.67	0.00	1
110.60	31.84	31.84	0.00	1
110.75	33.01	33.01	0.00	1
110.95	34.18	34.18	0.00	1
111.13	35.35	35.35	0.00	1
111.32	36.52	36.52	0.00	1
111.36	36.80	36.80	0.00	1
111.70	38.86	38.86	0.00	1
111.90	40.03	40.03	0.00	1
112.10	41.20	41.20	0.00	1
117.00	64.61	64.61	0.00	Overtopping

Table 3 - Summary of Culvert Flows at Crossing: CD-3 Pre

Site Data - CD-3 Pre

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 107.20 ft Outlet Station: 190.00 ft Outlet Elevation: 106.50 ft Number of Barrels: 1

Culvert Data Summary - CD-3 Pre

Barrel Shape: Circular Barrel Diameter: 2.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Tailwater Channel Data - CD-3 Pre

Tailwater Channel Option:Enter Constant Tailwater ElevationConstant Tailwater Elevation:107.74 ft (From SJRWMD permit # 90260-2)

Roadway Data for Crossing: CD-3 Pre

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 400.00 ft Crest Elevation: 117.00 ft Roadway Surface: Paved Roadway Top Width: 114.00 ft

CD-3 Post-Development

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 29.5 cfs Design Flow (50 year): 36.8 cfs Maximum Flow (100 year): 41.2 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-3 Post Discharge (cfs)	Roadway Discharge (cfs)	Iterations
110.50	29.50	29.50	0.00	1
110.60	30.67	30.67	0.00	1
110.70	31.84	31.84	0.00	1
110.83	33.01	33.01	0.00	1
111.00	34.18	34.18	0.00	1
111.19	35.35	35.35	0.00	1
111.39	36.52	36.52	0.00	1
111.44	36.80	36.80	0.00	1
111.78	38.86	38.86	0.00	1
111.98	40.03	40.03	0.00	1
112.19	41.20	41.20	0.00	1
117.00	64.80	64.80	0.00	Overtopping

Table 4 - Summary of Culvert Flows at Crossing: CD-3 Post

Site Data - CD-3 Post

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 107.35 ft Outlet Station: 195.00 ft Outlet Elevation: 106.55 ft Number of Barrels: 1

Culvert Data Summary - CD-3 Post

Barrel Shape: Circular Barrel Diameter: 2.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Tailwater Channel Data - CD-3 Post

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 107.74 ft (From Permit # 90260-2)

Roadway Data for Crossing: CD-3 Post

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 400.00 ft Crest Elevation: 117.00 ft Roadway Surface: Paved Roadway Top Width: 102.00 ft

CD-4 Pre-Development

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 60 cfs Design Flow (50 year): 75 cfs Maximum Flow (100 year): 84 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-4 Pre Discharge (cfs)	Roadway Discharge (cfs)	Iterations
106.91	60.00	60.00	0.00	1
107.02	62.40	62.40	0.00	1
107.19	64.80	64.80	0.00	1
107.36	67.20	67.20	0.00	1
107.52	69.60	69.60	0.00	1
107.68	72.00	72.00	0.00	1
107.85	74.40	74.40	0.00	1
107.89	75.00	75.00	0.00	1
108.17	79.20	79.20	0.00	1
108.33	81.60	81.60	0.00	1
108.49	84.00	84.00	0.00	1
110.37	107.74	107.74	0.00	Overtopping

Table 5 - Summary of Culvert Flows at Crossing: CD-4 Pre

Site Data - CD-4 Pre

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 103.90 ft Outlet Station: 177.00 ft Outlet Elevation: 103.58 ft Number of Barrels: 1

Culvert Data Summary - CD-4 Pre

Barrel Shape: Concrete Box Barrel Span: 5.00 ft Barrel Rise: 2.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (90°) Headwall Inlet Depression: None

Tailwater Channel Data - CD-4 Pre

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 105.43 ft (From SJRWMD permit # 90260-2)

Roadway Data for Crossing: CD-4 Pre

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 300.00 ft Crest Elevation: 110.37 ft Roadway Surface: Paved Roadway Top Width: 114.00 ft

CD-4 Post-Development

Note: Data from plans and permit for FPID No. 238422-1-52-01 (permit # 90260-2)

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 43.71 cfs Design Flow (50 year): 48.42 cfs Maximum Flow (100 year): 54.62 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-4 Post Discharge (cfs)	Roadway Discharge (cfs)	Iterations
107.59	43.71	43.71	0.00	1
107.67	44.80	44.80	0.00	1
107.75	45.89	45.89	0.00	1
107.84	46.98	46.98	0.00	1
107.93	48.07	48.07	0.00	1
107.95	48.42	48.42	0.00	1
108.10	50.26	50.26	0.00	1
108.20	51.35	51.35	0.00	1
108.29	52.44	52.44	0.00	1
108.38	53.53	53.53	0.00	1
108.48	54.62	54.62	0.00	1
110.37	86.07	86.07	0.00	Overtopping

Table 6 - Summary of Culvert Flows at Crossing: CD-4 Post

Site Data - CD-4 Post

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 103.78 ft Outlet Station: 192.00 ft

Outlet Elevation: 103.43 ft

Number of Barrels: 1

Culvert Data Summary - CD-4 Post

Barrel Shape: Concrete Box Barrel Span: 5.00 ft Barrel Rise: 2.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge (90°) Headwall Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
43.71	106.77	106.77	0.00
48.42	106.95	106.95	0.00
54.62	107.20	107.20	0.00

Downstream Channel Rating Curve (Crossing: CD-4 Post)

Tailwater Channel Data - CD-4 Post

Tailwater Channel Option:Enter Rating Curve (Based on ICPR Stages in Pond 1A1)Channel Invert Elevation:103.43 ft

Roadway Data for Crossing: CD-4 Post

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 300.00 ft Crest Elevation: 110.37 ft Roadway Surface: Paved Roadway Top Width: 102.00 ft

CD-4A

Post-Development

Note: Calculations based on LIDAR data obtained from Lake County and Orange County

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 2.66 cfs Design Flow (50 year): 3.31 cfs Maximum Flow (100 year): 4.15 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-4A Discharge (cfs)	Roadway Discharge (cfs)	Iterations
106.60	2.66	2.66	0.00	1
106.63	2.81	2.81	0.00	1
106.66	2.96	2.96	0.00	1
106.69	3.11	3.11	0.00	1
106.72	3.26	3.26	0.00	1
106.73	3.31	3.31	0.00	1
106.78	3.55	3.55	0.00	1
106.81	3.70	3.70	0.00	1
106.84	3.85	3.85	0.00	1
106.87	4.00	4.00	0.00	1
106.89	4.15	4.15	0.00	1
119.50	28.74	28.74	0.00	Overtopping

Table 7 - Summary of Culvert Flows at Crossing: CD-4A

Site Data - CD-4A

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 105.60 ft Outlet Station: 100.00 ft Outlet Elevation: 105.50 ft Number of Barrels: 1

Culvert Data Summary - CD-4A

Barrel Shape: Circular Barrel Diameter: 1.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
2.66	105.50	105.50	0.00
3.31	105.50	105.50	0.00
4.15	105.68	105.68	0.00

Downstream Channel Rating Curve (Crossing: CD-4A)

Tailwater Channel Data - CD-4A

Tailwater Channel Option:Enter Rating Curve (Based on ICPR Elevations in Lake)Channel Invert Elevation:105.50 ft

Roadway Data for Crossing: CD-4A

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 650.00 ft Crest Elevation: 119.50 ft Roadway Surface: Paved Roadway Top Width: 21.00 ft

CD-4B

Post-Development

Note: Calculations based on LIDAR data obtained from Lake County and Orange County

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 1.8 cfs Design Flow (50 year): 2.04 cfs Maximum Flow (100 year): 2.35 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-4B Discharge (cfs)	Roadway Discharge (cfs)	Iterations
106.84	1.80	1.80	0.00	1
106.88	1.86	1.86	0.00	1
106.92	1.91	1.91	0.00	1
106.96	1.97	1.97	0.00	1
107.01	2.02	2.02	0.00	1
107.02	2.04	2.04	0.00	1
107.11	2.13	2.13	0.00	1
107.16	2.19	2.19	0.00	1
107.21	2.24	2.24	0.00	1
107.26	2.29	2.29	0.00	1
107.30	2.35	2.35	0.00	1
138.70	40.74	40.74	0.00	Overtopping

Table 8 - Summary of Culvert Flows at Crossing: CD-4B

Site Data - CD-4B

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 105.60 ft Outlet Station: 150.00 ft Outlet Elevation: 105.50 ft

Number of Barrels: 1

Culvert Data Summary - CD-4B

Barrel Shape: Circular Barrel Diameter: 1.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
1.80	106.77	106.77	0.00
2.04	106.95	106.95	0.00
2.35	107.20	107.20	0.00

Downstream Channel Rating Curve (Crossing: CD-4B)

Tailwater Channel Data - CD-4B

Tailwater Channel Option:Enter Rating Curve (Based on ICPR Elevations in Pond 1A1)Channel Invert Elevation:105.50 ft

Roadway Data for Crossing: CD-4B

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 300.00 ft Crest Elevation: 138.70 ft Roadway Surface: Paved Roadway Top Width: 21.00 ft

CD-4C

Post-Development

Note: Calculations based on LIDAR data obtained from Lake County and Orange County and data from plans and permit for FPID No. 238422-1-52-01 (permit # 90260-2)

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 4.89 cfs Design Flow (50 year): 5.94 cfs Maximum Flow (100 year): 7.36 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-4C Discharge (cfs)	Roadway Discharge (cfs)	Iterations
106.77	4.89	4.89	0.00	1
106.81	5.14	5.14	0.00	1
106.85	5.38	5.38	0.00	1
106.89	5.63	5.63	0.00	1
106.93	5.88	5.88	0.00	1
106.94	5.94	5.94	0.00	1
107.02	6.37	6.37	0.00	1
107.06	6.62	6.62	0.00	1
107.10	6.87	6.87	0.00	1
107.15	7.11	7.11	0.00	1
107.19	7.36	7.36	0.00	1
125.95	37.23	37.23	0.00	Overtopping

Table 9 - Summary of Culvert Flows at Crossing: CD-4C

Site Data - CD-4C

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 105.50 ft Outlet Station: 95.00 ft Outlet Elevation: 104.00 ft

Number of Barrels: 1

Culvert Data Summary - CD-4C

Barrel Shape: Circular Barrel Diameter: 1.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Tailwater Channel Data - CD-4C

Tailwater Channel Option:Enter Constant Tailwater ElevationConstant Tailwater Elevation:105.43 ft (Based on Existing Permit for CD-4)

Roadway Data for Crossing: CD-4C

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 600.00 ft Crest Elevation: 125.95 ft Roadway Surface: Paved Roadway Top Width: 23.00 ft

CD-5 Post-Development

Note: Calculations based on LIDAR data obtained from Lake County and Orange County

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 0.07 cfs Design Flow (50 year): 2.56 cfs Maximum Flow (100 year): 3.1 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-5 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
106.40	0.07	0.07	0.00	1
106.40	0.37	0.37	0.00	1
106.40	0.68	0.68	0.00	1
106.41	0.98	0.98	0.00	1
106.41	1.28	1.28	0.00	1
106.42	1.59	1.59	0.00	1
106.43	1.89	1.89	0.00	1
106.43	2.19	2.19	0.00	1
106.44	2.49	2.49	0.00	1
106.45	2.56	2.56	0.00	1
106.47	3.10	3.10	0.00	1
116.63	38.10	38.10	0.00	Overtopping

Table 10 - Summary of Culvert Flows at Crossing: CD-5

Site Data - CD-5

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 105.00 ft Outlet Station: 270.00 ft Outlet Elevation: 103.00 ft Number of Barrels: 2

Culvert Data Summary - CD-5

Barrel Shape: Circular Barrel Diameter: 1.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Tailwater Channel Data - CD-5

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 106.40 ft (Floodplain Elevation)

Roadway Data for Crossing: CD-5

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 1400.00 ft Crest Elevation: 116.63 ft Roadway Surface: Paved Roadway Top Width: 197.10 ft

CD-6 Post-Development

Note: Calculations based on LIDAR data obtained from Lake County and Orange County

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 99.48 cfs Design Flow (50 year): 107.05 cfs Maximum Flow (100 year): 113.99 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-6 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
109.55	99.48	99.48	0.00	1
109.67	100.93	100.93	0.00	1
109.80	102.38	102.38	0.00	1
109.93	103.83	103.83	0.00	1
110.06	105.28	105.28	0.00	1
110.19	106.74	106.74	0.00	1
110.22	107.05	107.05	0.00	1
110.46	109.64	109.64	0.00	1
110.60	111.09	111.09	0.00	1
110.74	112.54	112.54	0.00	1
110.89	113.99	113.99	0.00	1
111.48	119.83	119.83	0.00	Overtopping

Table 11 - Summary of Culvert Flows at Crossing: CD-6

Site Data - CD-6

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 103.00 ft Outlet Station: 160.00 ft Outlet Elevation: 102.00 ft Number of Barrels: 1

Culvert Data Summary - CD-6

Barrel Shape: Circular Barrel Diameter: 3.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Tailwater Channel Data - CD-6

Tailwater Channel Option:Enter Constant Tailwater ElevationConstant Tailwater Elevation:105.50 ft (Crown of Pipe)

Roadway Data for Crossing: CD-6

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 800.00 ft Crest Elevation: 111.48 ft Roadway Surface: Paved Roadway Top Width: 84.25 ft

CD-6A

Post-Development

Note: Calculations based on LIDAR data obtained from Lake County and Orange County

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 2.14 cfs Design Flow (50 year): 3.9 cfs Maximum Flow (100 year): 5.92 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-6A Discharge (cfs)	Roadway Discharge (cfs)	Iterations
106.48	2.14	2.14	0.00	1
106.55	2.52	2.52	0.00	1
106.61	2.90	2.90	0.00	1
106.68	3.27	3.27	0.00	1
106.75	3.65	3.65	0.00	1
106.79	3.90	3.90	0.00	1
106.88	4.41	4.41	0.00	1
106.95	4.79	4.79	0.00	1
107.03	5.16	5.16	0.00	1
107.10	5.54	5.54	0.00	1
107.18	5.92	5.92	0.00	1
109.88	24.34	24.34	0.00	Overtopping

Table 12 - Summary of Culvert Flows at Crossing: CD-6A

Site Data - CD-6A

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 105.00 ft Outlet Station: 150.00 ft Outlet Elevation: 104.90 ft Number of Barrels: 1

Culvert Data Summary - CD-6A

Barrel Shape: Circular Barrel Diameter: 2.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
2.14	106.45	106.45	0.00
3.90	106.72	106.72	0.00
5.92	107.01	107.01	0.00

Downstream Channel Rating Curve (Crossing: CD-6A)

Tailwater Channel Data - CD-6A

Tailwater Channel Option:Enter Rating Curve (Based on ICPR elevations in Pond 3A1)Channel Invert Elevation:103.00 ft

Roadway Data for Crossing: CD-6A

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 600.00 ft Crest Elevation: 109.88 ft Roadway Surface: Paved Roadway Top Width: 30.00 ft

CD-6B

Post-Development

Note: Calculations based on LIDAR data obtained from Lake County and Orange County

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 9.53 cfs Design Flow (50 year): 12.6 cfs Maximum Flow (100 year): 14.32 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-6B Discharge (cfs)	Roadway Discharge (cfs)	Iterations
106.65	9.53	9.53	0.00	1
106.71	10.01	10.01	0.00	1
106.76	10.49	10.49	0.00	1
106.82	10.97	10.97	0.00	1
106.88	11.45	11.45	0.00	1
106.94	11.93	11.93	0.00	1
107.00	12.40	12.40	0.00	1
107.02	12.60	12.60	0.00	1
107.16	13.36	13.36	0.00	1
107.26	13.84	13.84	0.00	1
107.37	14.32	14.32	0.00	1
137.27	105.31	105.31	0.00	Overtopping

Table 13 - Summary of Culvert Flows at Crossing: CD-6B

Site Data - CD-6B

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 105.00 ft Outlet Station: 350.00 ft Outlet Elevation: 104.50 ft Number of Barrels: 1

Culvert Data Summary - CD-6B

Barrel Shape: Circular Barrel Diameter: 2.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

	0 (0 ,	
Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)
9.53	105.97	105.97	0.00
12.60	106.42	106.42	0.00
14.32	106.82	106.82	0.00

Downstream Channel Rating Curve (Crossing: CD-6B)

Tailwater Channel Data - CD-6B

Tailwater Channel Option:Enter Rating Curve (Based on ICPR Elevations in Pond 3A2)Channel Invert Elevation:103.00 ft

Roadway Data for Crossing: CD-6B

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 1800.00 ft Crest Elevation: 137.27 ft Roadway Surface: Paved Roadway Top Width: 30.00 ft

CD-6C

Post-Development

Note: Calculations based on LIDAR data obtained from Lake County and Orange County

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 20.08 cfs Design Flow (50 year): 22.72 cfs Maximum Flow (100 year): 24.82 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-6C Discharge (cfs)	Roadway Discharge (cfs)	Iterations
106.72	20.08	20.08	0.00	1
106.81	20.55	20.55	0.00	1
106.90	21.03	21.03	0.00	1
106.99	21.50	21.50	0.00	1
107.08	21.98	21.98	0.00	1
107.17	22.45	22.45	0.00	1
107.23	22.72	22.72	0.00	1
107.37	23.40	23.40	0.00	1
107.47	23.87	23.87	0.00	1
107.50	24.35	24.01	0.15	26
107.51	24.82	24.03	0.59	4
107.50	24.00	24.00	0.00	Overtopping

Table 4 - Summary of Culvert Flows at Crossing: CD-6C

Site Data - CD-6C

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 103.00 ft Outlet Station: 130.00 ft Outlet Elevation: 102.90 ft Number of Barrels: 1

Culvert Data Summary - CD-6C

Barrel Shape: Circular Barrel Diameter: 2.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Tailwater Channel Data - CD-6C

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 104.90 ft (Crown of Pipe)

Roadway Data for Crossing: CD-6C

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 500.00 ft Crest Elevation: 107.50 ft Roadway Surface: Paved Roadway Top Width: 21.00 ft

CD-7 Post-Development

Note: Calculations based on LIDAR data obtained from Lake County and Orange County

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 20.91 cfs Design Flow (50 year): 24.95 cfs Maximum Flow (100 year): 27.84 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-7 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
111.77	20.91	20.91	0.00	1
111.83	21.60	21.60	0.00	1
111.88	22.30	22.30	0.00	1
111.94	22.99	22.99	0.00	1
111.99	23.68	23.68	0.00	1
112.05	24.38	24.38	0.00	1
112.10	24.95	24.95	0.00	1
112.18	25.76	25.76	0.00	1
112.24	26.45	26.45	0.00	1
112.31	27.15	27.15	0.00	1
112.37	27.84	27.84	0.00	1
112.76	31.51	31.51	0.00	Overtopping

Table 15 - Summary of Culvert Flows at Crossing: CD-7

Site Data - CD-7

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 109.00 ft Outlet Station: 160.00 ft Outlet Elevation: 108.50 ft Number of Barrels: 1

Culvert Data Summary - CD-7

Barrel Shape: Circular Barrel Diameter: 2.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Tailwater Channel Data - CD-7

Tailwater Channel Option:Enter Constant Tailwater ElevationConstant Tailwater Elevation:111.00 ft (Crown of pipe)

Roadway Data for Crossing: CD-7

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 800.00 ft Crest Elevation: 112.76 ft Roadway Surface: Paved Roadway Top Width: 82.50 ft

CD-8 Post-Development

Note: Calculations based on LIDAR data obtained from Lake County and Orange County

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: (25 year) 2.59 cfs Design Flow: (50 year) 3.25 cfs Maximum Flow: (100 year) 3.7 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-8 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
106.20	2.59	2.59	0.00	1
106.22	2.70	2.70	0.00	1
106.24	2.81	2.81	0.00	1
106.25	2.92	2.92	0.00	1
106.27	3.03	3.03	0.00	1
106.29	3.15	3.15	0.00	1
106.31	3.25	3.25	0.00	1
106.34	3.37	3.37	0.00	1
106.36	3.48	3.48	0.00	1
106.38	3.59	3.59	0.00	1
106.41	3.70	3.70	0.00	1
110.93	12.88	12.88	0.00	Overtopping

Table 16 - Summary of Culvert Flows at Crossing: CD-8

Site Data - CD-8

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 102.00 ft Outlet Station: 290.00 ft Outlet Elevation: 101.50 ft Number of Barrels: 1

Culvert Data Summary - CD-8

Barrel Shape: Circular Barrel Diameter: 1.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Tailwater Channel Data - CD-8

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 106.00 ft (Floodplain Elevation)

Roadway Data for Crossing: CD-8

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 2800.00 ft Crest Elevation: 110.93 ft Roadway Surface: Paved Roadway Top Width: 198.00 ft

CD-9 Post-Development

Note: Calculations based on LIDAR data obtained from Lake County and Orange County

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: (25 year) 2.71 cfs Design Flow: (50 year) 3.15 cfs Maximum Flow: (100 year) 3.44 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-9 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
106.25	2.71	2.71	0.00	1
106.26	2.78	2.78	0.00	1
106.27	2.86	2.86	0.00	1
106.29	2.93	2.93	0.00	1
106.30	3.00	3.00	0.00	1
106.32	3.08	3.08	0.00	1
106.33	3.15	3.15	0.00	1
106.33	3.15	3.15	0.00	1
106.36	3.29	3.29	0.00	1
106.38	3.37	3.37	0.00	1
106.40	3.44	3.44	0.00	1
124.94	23.75	23.75	0.00	Overtopping

Table 17 - Summary of Culvert Flows at Crossing: CD-9

Site Data - CD-9

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 103.50 ft Outlet Station: 340.00 ft Outlet Elevation: 103.00 ft Number of Barrels: 1

Culvert Data Summary - CD-9

Barrel Shape: Circular Barrel Diameter: 1.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Tailwater Channel Data - CD-9

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 106.00 ft (Floodplain elevation)

Roadway Data for Crossing: CD-9

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 2000.00 ft Crest Elevation: 124.94 ft Roadway Surface: Paved Roadway Top Width: 232.00 ft

CD-10 Post-Development

Note: Calculations based on LIDAR data obtained from Lake County and Orange County

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow (25 year): 28.02 cfs Design Flow (50 year): 28.02 cfs Maximum Flow (100 year): 28.02 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	CD-10 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
116.64	28.02	28.02	0.00	1
116.64	28.02	28.02	0.00	1
116.64	28.02	28.02	0.00	1
116.64	28.02	28.02	0.00	1
116.64	28.02	28.02	0.00	1
116.64	28.02	28.02	0.00	1
116.64	28.02	28.02	0.00	1
116.64	28.02	28.02	0.00	1
116.64	28.02	28.02	0.00	1
116.64	28.02	28.02	0.00	1
116.64	28.02	28.02	0.00	1
116.91	32.54	32.54	0.00	Overtopping

Table 18 - Summary of Culvert Flows at Crossing: CD-10

Site Data - CD-10

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 114.50 ft Outlet Station: 165.00 ft Outlet Elevation: 113.50 ft Number of Barrels: 2

Culvert Data Summary - CD-10

Barrel Shape: Circular Barrel Diameter: 2.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Tailwater Channel Data - CD-10

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 115.50 ft (Crown of Pipe)

Roadway Data for Crossing: CD-10

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 300.00 ft Crest Elevation: 116.91 ft Roadway Surface: Paved Roadway Top Width: 89.50 ft Appendix F – ICPR Analysis

Cross Drain 4 Pre-Development Input Report

Manual Basin: CD-4 Upstream Basin					
Scenario:	Scenario1				
Node:	CD-4 Upstream				
Hydrograph Method:	NRCS Unit Hydrog	jraph			
Infiltration Method:	Curve Number				
Time of Concentration:	18.0000 min				
Max Allowable Q:	0.00 cfs				
Time Shift:	0.0000 hr				
Unit Hydrograph:	UH256				
Peaking Factor:	256.0				
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name		
110.0000 2		2			

Comment:

Node: CD-4

Upstream						
Scenario:	Scenario1					
Type:	Stage/Area					
Base Flow:	0.00 cfs					
Initial Stage:	104.00 ft					
Warning Stage:	107.40 ft					

Stage [ft]	Area [ac]	Area [ft2]
104.00	15.1100	658192
105.00	15.7600	686506
106.00	16.6900	727016
107.00	17.6300	767963
108.00	18.9900	827204
109.00	20.8600	908662

Comment:

Node: Downstream Floodplain	
Scenario:	Scenario1
Туре:	Time/Stage
Base Flow:	0.00 cfs
Initial Stage:	104.00 ft
Warning Stage:	108.00 ft
Boundary Stage:	

Year	Month	Day	Hour	Stage [ft]
0	0	0	0.0000	105.43
0	0	0	999.0000	105.43

Comment: Tailwater set at CD-4 tailwater in HY-8 from existing permit

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4 Pre\

Cross Drain 4 Pre-Development Input Report

be Link: CD-4		Upst	ream	Down	stream
Scenario:	Scenario1	Invert:	103.90 ft	Invert:	103.58 ft
From Node:	CD-4 Upstream	Manning's N:	0.0120	Manning's N:	0.0120
To Node:	Downstream	Geometry:	Rectangular	Geometry:	Rectangular
	Floodplain	Max Depth:	2.00 ft	Max Depth:	2.00 ft
Link Count:	1	Max Width:	5.00 ft	Max Width:	5.00 ft
Flow Direction:	Both	Fillet:	0.00 ft	Fillet:	0.00 ft
Damping:	0.0000 ft			Bottom Clip	
Length:	177.00 ft	Default:	0.00 ft	Default:	0.00 ft
FHWA Code:	1	Op Table:		Op Table:	
Entr Loss Coef:	0.00	Ref Node:		Ref Node:	
Exit Loss Coef:	0.00	Manning's N:	0.0000	Manning's N:	0.0000
Bend Loss Coef:	0.00			Top Clip	
Bend Location:	0.00 ft	Default:	0.00 ft	Default:	0.00 ft
Energy Switch:	Energy	Op Table:		Op Table:	
		Ref Node:		Ref Node:	
		Manning's N:	0.0000	Manning's N:	0.0000

mulation:	100yr
	Scenario:

Scenario:Scenario1Run Date/Time:5/22/2019 12:04:07 PMProgram Version:ICPR4 4.03.02.00

		General		
Run Mode:	Normal			
	Year	Month	Dav	Hour [hr]
			Day	
Start Time:	0	0	0	0.0000
End Time:	0	0	0	30.0000
	Hydrology [sec]	Surface Hydraulics		
		[sec]	_	
Min Calculation Time:	60.0000	0.1000	_	
Max Calculation Time:		30.0000		
		Output Time Increments		
Hydr	ology			
	-			
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
Surface	Hydraulics			
		-		
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4 Pre\

	Resour	ces & Lookup Tables	
Reso	Irres	Lookur	Tables
Rainfall Folder:		Boundary Stage Set:	
		Extern Hydrograph Set:	
Unit Hydrograph		Curve Number Set:	1
Folder:			
		Green-Ampt Set:	
		Vertical Layers Set:	
		Impervious Set:	1
	Tole	erances & Options	
Time Marching:	SAOR	IA Recovery Time:	24.0000 hr
Max Iterations:	6		
Over-Relax Weight	0.5 dec		
Fact:			
dZ Tolerance:	0.0010 ft	Manual Basin Rain Opt:	Global
Max dZ:	1.0000 ft		
Link Optimizer Tol:	0.0001 ft	Rainfall Name:	~FDOT-1
		Rainfall Amount:	8.00 in
Edge Length Option:	Automatic	Storm Duration:	1.0000 hr
		Dflt Damping (1D):	0.0050 ft
		Min Node Srf Area	100 ft2
		(1D):	
		Energy Switch (1D):	Energy

Comment

Scenario:	Scenario1					
Run Date/Time:	5/22/2019 12:04:12 PM					
Program Version:	ICPR4 4.03.02.00	CPR4 4.03.02.00				
		General				
Run Mode:	Normal					
	Year	Month	Day	Hour [hr]		
Start Time:	0	0	0	0.0000		
End Time:	0	0	0	30.0000		
	Hydrology [sec]	Surface Hydraulics				

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4 Pre\

Min Calculation Time: Max Calculation Time:	60.0000	[sec] 0.1000 30.0000	-	
		Output Time Increments		
Hydr	ology			
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
Surface H	lydraulics			
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
	rt File			
Save Restart:	Faise			
		Resources & Lookup Table	25	
Reso	urces		Lookup	Tables
Rainfall Folder:			Boundary Stage Set:	
Unit Hydrograph			Extern Hydrograph Set: Curve Number Set:	1
Folder:				
			Green-Ampt Set:	
			Vertical Layers Set: Impervious Set:	1
		Tolerances & Options		
Time Marching:	SAOR		IA Recovery Time:	24.0000 hr
Max Iterations:	6		in Recovery fille.	24.0000 11
	0.5 dec			
Fact:	0.0010 ft		Manual Pasin Dain Ont.	Clobal
dZ Tolerance: Max dZ:	1.0000 ft		Manual Basin Rain Opt:	GIODAI
Link Optimizer Tol:	0.0001 ft		Rainfall Name:	~FDOT-1
			Rainfall Amount:	5.90 in
Edge Length Option:	Automatic		Storm Duration:	1.0000 hr
			Dflt Damping (1D):	0.0050 ft
			Min Node Srf Area	100 ft2
			(1D): Energy Switch (1D):	Energy
Comment:]

^{5/22/2019 12:05}

Simulation: 25yr				
Scenario:	Scenario1			
Run Date/Time:	5/22/2019 12:04:16 PM			
Program Version:	ICPR4 4.03.02.00			
		General		
Run Mode:	Normal			
	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	30.0000
	Hydrology [sec]	Surface Hydraulics		
		[sec]		
Min Calculation Time:	60.0000	0.1000		
Max Calculation Time:		30.0000		
		Output Time Increments		
Hydr	ology			
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
Surface F	lydraulics	1		
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
	rt File			
Save Restart:	Faise			
		Resources & Lookup Tables	S	
		_		
	urces		-	Tables
Rainfall Folder:			Boundary Stage Set:	
			Extern Hydrograph Set:	
Unit Hydrograph			Curve Number Set:	1
Folder:			Green-Ampt Set:	
			Vertical Layers Set:	
			Impervious Set:	1
		Tolerances & Options		
Time Marchine.	SAOD			24 0000 br
Time Marching: Max Iterations:	SAOR 6		IA Recovery Time:	24.0000 hr
Over-Relax Weight	0 0.5 dec			
Fact:	0.0 000			
dZ Tolerance:	0.0010 ft		Manual Basin Rain Opt:	Global

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4 Pre\

Max dZ:	1.0000 ft		
Link Optimizer Tol:	0.0001 ft	Rainfall Name:	~FDOT-1
		Rainfall Amount:	6.80 in
Edge Length Option:	Automatic	Storm Duration:	1.0000 hr
		Dflt Damping (1D):	0.0050 ft
		Min Node Srf Area	100 ft2
		(1D):	
		Energy Switch (1D):	Energy

Comment:

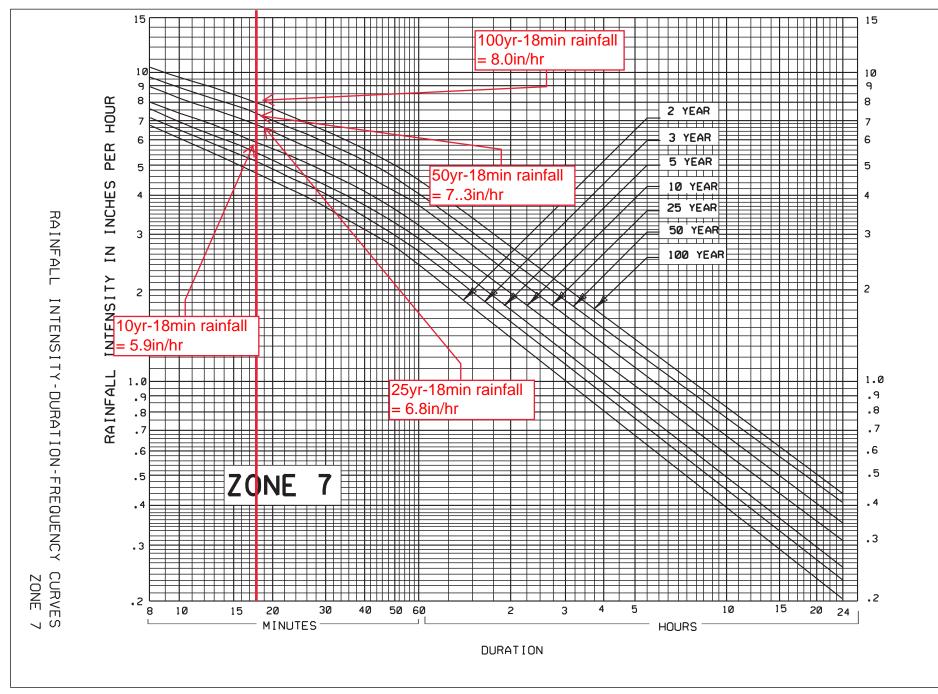
-				
Simulation: 50yr				
Scenario:	Scenario1			
Run Date/Time:	5/22/2019 12:04:21 PM			
Program Version:	ICPR4 4.03.02.00			
		General		
Run Mode:	Normal		-	
	Voor	Month	Davi	Llour [br]
Start Time:	Year0	0	Day 0	Hour [hr] 0.0000
End Time:	0	0	0	30.0000
End millo.	0	U U	Ŭ	00.0000
	Hydrology [sec]	Surface Hydraulics		
		[sec]	_	
Min Calculation Time:	60.0000	0.1000		
Max Calculation Time:		30.0000		
		Output Time Increments		
Hydr	ology	I		
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0		0000 15.0000
	Į -	_	1	
Surface H	Hydraulics			
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0		0000 15.0000
	rt File			
Save Restart:	Faise			
		Resources & Lookup Table	es estatution est estatution estatution esta	
		-		
Reso	urces		LC	pokup Tables

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4 Pre\

Rainfall Folder:

Unit Hydrograph Folder:

Boundary Stage Set: Extern Hydrograph Set: Curve Number Set: 1 Green-Ampt Set:

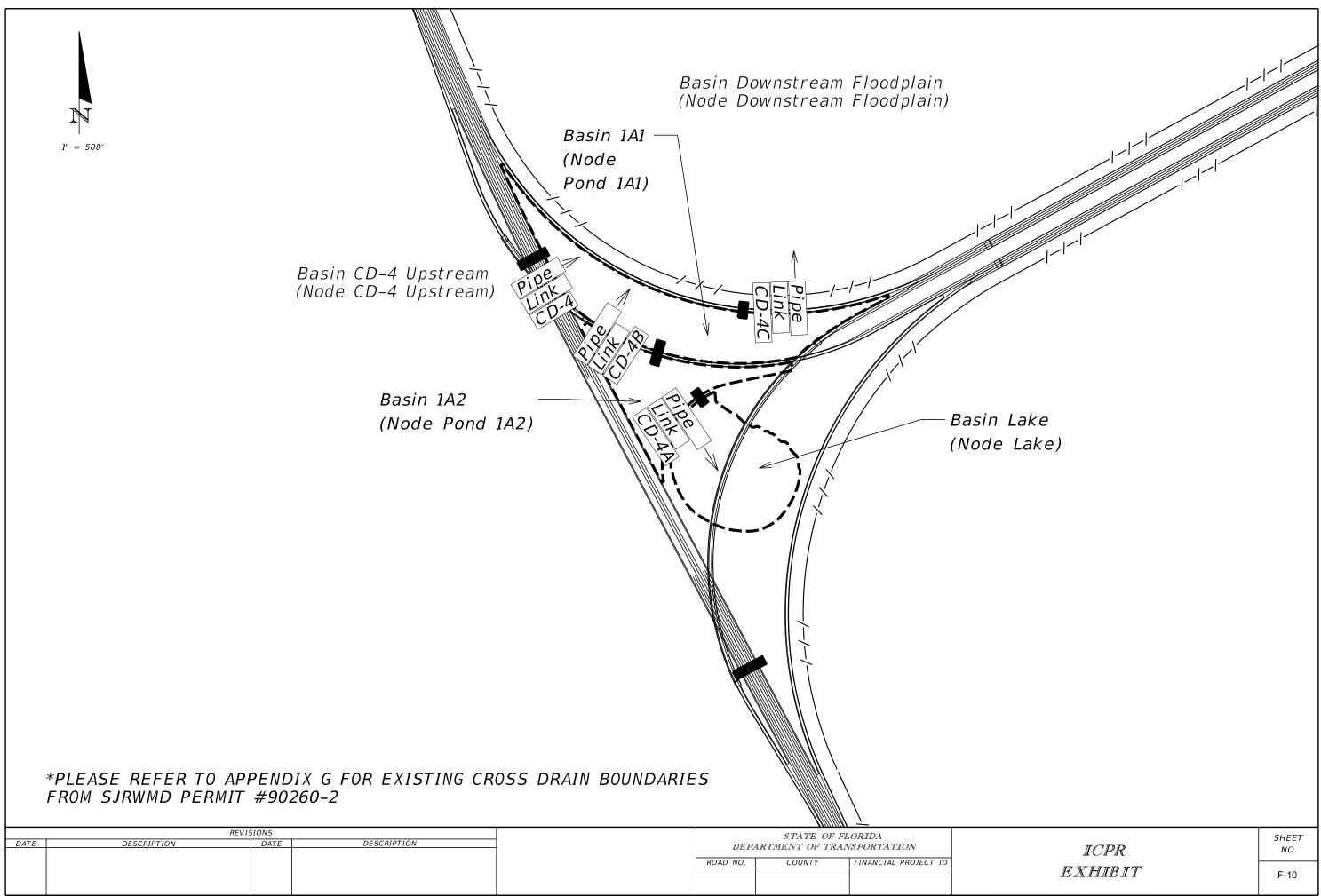

Vertical Layers Set: Impervious Set: 1

olerances & Options

Time Marching:	SAOR	IA Recovery Time:	24.0000 hr
Max Iterations:	6		
Over-Relax Weight	0.5 dec		
Fact:			
dZ Tolerance:	0.0010 ft	Manual Basin Rain Opt:	Global
Max dZ:	1.0000 ft		
Link Optimizer Tol:	0.0001 ft	Rainfall Name:	~FDOT-1
		Rainfall Amount:	7.30 in
Edge Length Option:	Automatic	Storm Duration:	1.0000 hr
		Dflt Damping (1D):	0.0050 ft
		Min Node Srf Area	100 ft2
		(1D):	
		Energy Switch (1D):	Energy

Comment:

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4 Pre\


Drainage Manual IDF Curves

Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta Stage [ft]	Max Total Inflow [cfs]	Max Total Outflow [cfs]	Max Surface Area [ft2]	Time to Max Stage [hr]	Time to Min/Max Delta Stage [hr]	Time to Max Total Inflow [hr]	Time to Max Total Outflow [hr]
CD-4 Upstream	25yr	107.40	106.75	0.0010	775.99	<mark>60.71</mark>	757839	1.9600	0.4491	0.7501	1.9541
Downstream Floodplain	25yr	108.00	105.43	0.0000	60.71	28.54	0	0.0000	0.0000	1.9541	0.7079

Node Max Conditions w/ Times [Scenario1]

The maximum total flow through CD-4 during the 25-year storm is equal to the 60 CFS in the existing permit. Therefore, this basin model accurately portrays what was originally modeled and can be used to model CD-4 in the postdevelopment.

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4 Pre\

NoteBorderText

C:\FDOTS54\RESOURCES\Cell\Roadway.ce

Cross Drain 4, 4A, 4B, and 4C Input Report

Manual Basin: Basin 1A1					
Scenario:	Scenario1				
Node:	Pond 1A1				
Hydrograph Method:	NRCS Unit Hydrograph				
Infiltration Method:	Curve Number				
Time of Concentration:	10.0000 min				
Max Allowable Q:	0.00 cfs	0.00 cfs			
Time Shift:	0.0000 hr				
Unit Hydrograph:	UH256				
Peaking Factor:	256.0				
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name		
13.4000 3		3			

Comment:

Manual Basin: Basin 1A2					
Scenario	: Scenario1				
Node	: Pond 1A2	Pond 1A2			
Hydrograph Method	NRCS Unit Hydrograph				
Infiltration Method	Curve Number				
Time of Concentration	: 10.0000 min				
Max Allowable C	: 0.00 cfs				
Time Shif	: 0.0000 hr	0.0000 hr			
Unit Hydrograph	: UH256				
Peaking Facto	: 256.0				
Area [ac] Land Cove	r Zone	Soil Zone	Rainfall Name		
7.0000 3		3			
		-			

Comment:

Manual Basin: Basin Lake				
Scenario:	Scenario1			
Node:	Lake			
Hydrograph Method:	NRCS Unit Hydrog	jraph		
Infiltration Method:	Curve Number			
Time of Concentration:	10.0000 min			
Max Allowable Q:	0.00 cfs			
Time Shift:	0.0000 hr			
Unit Hydrograph:	UH256			
Peaking Factor:	256.0			
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name	
9.7000 3		3		

Comment:

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4\

Manual Basin: CD-4 Downstream Basin				
Scenario:	Scenario1			
Node:	Downstream Floor	Downstream Floodplain		
Hydrograph Method:	NRCS Unit Hydrog	NRCS Unit Hydrograph		
Infiltration Method:	Curve Number			
Time of Concentration:	18.4000 min			
Max Allowable Q:	0.00 cfs			
Time Shift:	0.0000 hr			
Unit Hydrograph:	UH256			
Peaking Factor:	256.0			
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name	
124.0000 1		1		

Comment:

Manual Basin: CD-4 Upstream Basin				
Scenario:	Scenario1			
Node:	CD-4 Upstream			
Hydrograph Method:	NRCS Unit Hydrog	NRCS Unit Hydrograph		
Infiltration Method:	Curve Number			
Time of Concentration:	18.0000 min			
Max Allowable Q:	0.00 cfs	0.00 cfs		
Time Shift:	0.0000 hr			
Unit Hydrograph:	UH256			
Peaking Factor:	256.0			
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name	
110.0000 2		2		
		-		

Comment:

Node: CD-4 Upstream

Scenario: Scenario1 Type: Stage/Area Base Flow: 0.00 cfs Initial Stage: 104.00 ft Warning Stage: 109.00 ft

Stage [ft]	Area [ac]	Area [ft2]
104.00	15.1100	658192
105.00	15.7600	686506
106.00	16.6900	727016
107.00	17.6300	767963
108.00	18.9900	827204
109.00	20.8600	908662

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4\

Comment:

Node: Downstream FloodplainScenario:Scenario1Type:Stage/AreaBase Flow:0.00 cfsInitial Stage:104.00 ftWarning Stage:108.00 ft

Stage [ft]	Area [ac]	Area [ft2]
104.00	70.8600	3086662
105.00	72.0000	3136320
106.00	73.0000	3179880
107.00	74.5000	3245220
108.00	76.0000	3310560

Comment:

Node: Lake

Scenario:	Scenario1
Type:	Stage/Area
Base Flow:	0.00 cfs
Initial Stage:	104.00 ft
Warning Stage:	108.00 ft

Stage [ft]	Area [ac]	Area [ft2]
104.00	6.0000	261360
105.00	9.0000	392040
106.00	9.3500	407286
107.00	9.7000	422532

Comment:

Node: Pond 1A1			
Scenario:	Scenario1		
Туре:	Stage/Area		
Base Flow:	0.00 cfs		
Initial Stage:	105.50 ft		
Warning Stage:	109.00 ft		
			_
Stage [ft]	Area [ac]	Area [ft2]	

6.7500

294030

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4\

105.50

Cross Drain 4, 4A, 4B, and 4C Input Report

Stage [ft]	Area [ac]	Area [ft2]
106.00	6.9100	301000
107.00	7.2500	315810
108.00	7.6000	331056
109.00	7.9400	345866

Comment:

Node: Pond 1A2

Scenario1
Stage/Area
0.00 cfs
105.50 ft
108.00 ft

Stage [ft]	Area [ac]	Area [ft2]
105.50	3.4700	151153
106.00	3.5600	155074
107.00	3.7300	162479
108.00	3.9200	170755

Comment:

Pipe Link: CD-4		Upst	ream	Dow	nstream
Scenario:	Scenario1	Invert:	103.78 ft	Invert	103.43 ft
From Node:	CD-4 Upstream	Manning's N:	0.0120	Manning's Na	0.0120
To Node:	Pond 1A1	Geometry:	Rectangular	Geometry	: Rectangular
Link Count:	1	Max Depth:	2.00 ft	Max Depth:	2.00 ft
Flow Direction:	Both	Max Width:	5.00 ft	Max Width:	5.00 ft
Damping:	0.0000 ft	Fillet:	0.00 ft	Fillet:	0.00 ft
Length:	192.00 ft			Bottom Clip	
FHWA Code:	1	Default:	0.00 ft	Default	0.00 ft
Entr Loss Coef:	0.00	Op Table:		Op Table:	
Exit Loss Coef:	0.00	Ref Node:		Ref Node:	
Bend Loss Coef:	0.00	Manning's N:	0.0000	Manning's Na	0.0000
Bend Location:	0.00 ft			Top Clip	
Energy Switch:	Energy	Default:	0.00 ft	Default	0.00 ft
		Op Table:		Op Table:	
		Ref Node:		Ref Node:	
		Manning's N:	0.0000	Manning's Na	0.0000
Comment:					

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4\

e Link: CD-4A		Upst	ream	Dow	nstream
Scenario:	Scenario1	Invert:	105.60 ft	Invert	105.50 ft
From Node:	Lake	Manning's N:	0.0120	Manning's Na	0.0120
To Node:	Pond 1A2	Geometry	y: Circular	Geomet	ry: Circular
Link Count:	1	Max Depth:	1.50 ft	Max Depth:	1.50 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default	0.00 ft
Length:	100.00 ft	Op Table:		Op Table:	
FHWA Code:	1	Ref Node:		Ref Node:	
Entr Loss Coef:	0.00	Manning's N:	0.0000	Manning's Na	0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default	0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table:	
Energy Switch:	Energy	Ref Node:		Ref Node:	
		Manning's N:	0.0000	Manning's N	0.0000

Pipe Link: CD-4B		Upst	ream	Do	vnstream
Scenario:	Scenario1	Invert:	105.60 ft	Inve	t: 105.50 ft
From Node:	Pond 1A2	Manning's N:	0.0120	Manning's	N: 0.0120
To Node:	Pond 1A1	Geometry	y: Circular	Geom	etry: Circular
Link Count:	1	Max Depth:	1.50 ft	Max Dept	n: 1.50 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Defau	t: 0.00 ft
Length:	150.00 ft	Op Table:		Op Tabl	e:
FHWA Code:	1	Ref Node:		Ref Nod	e:
Entr Loss Coef:	0.00	Manning's N:	0.0000	Manning's	N: 0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Defau	t: 0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Tabl	ə:
Energy Switch:	Energy	Ref Node:		Ref Nod	e:
		Manning's N:	0.0000	Manning's	N: 0.0000
Comment:					

Pipe Link: CD-4C		Upsti	ream	Do	wnstream
Scenario:	Scenario1	Invert:	105.50 ft	Inve	rt: 104.00 ft
From Node:	Pond 1A1	Manning's N:	0.0120	Manning's	N: 0.0120
To Node:	Downstream	Geometry	: Circular	Geom	etry: Circular
	Floodplain	Max Depth:	1.50 ft	Max Dept	h: 1.50 ft
Link Count:	1			Bottom Clip	
Flow Direction:	Both	Default:	0.00 ft	Defau	lt: 0.00 ft
Damping:	0.0000 ft	Op Table:		Op Tab	le:
Length:	95.00 ft	Ref Node:		Ref Noc	le:
FHWA Code:	1	Manning's N:	0.0000	Manning's	N: 0.0000
Entr Loss Coef:	0.00			Top Clip	

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4\

5/22/2019 12:12

Exit Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft
Bend Loss Coef:	0.00	Op Table:		Op Table:	
Bend Location:	0.00 ft	Ref Node:		Ref Node:	
Energy Switch:	Energy	Manning's N:	0.0000	Manning's N:	0.0000
Comment:					

Simulation: 100yr Scenario: Scenario1 Run Date/Time: 5/22/2019 12: 10:59 PM. Program Version: ICPR4 4.03.02.00 General Run Mode: Normal General Run Mode: Normal General Run Mode: Normal Start Time: 0 0 0 End Time: O O O Min Calculation Time: 60.0000 0.1000 Surface Hydraulics Min Calculation Time: 60.0000 Output Time Increments Vear Month Day Hour [hr] Time 1 Vear Month Day Hydrology Vear Month Day Hydrology Vear Month Day Output Time Increments Day <th>Hour [hr] 0.0000 30.0000</th>	Hour [hr] 0.0000 30.0000
Scenario: Scenario1 Run Date/Time: 5/22/2019 12: 10:59 PM Program Version: ICPR4 4.03.02.00 General Run Mode: Normal Run Mode: Normal Year Month Day End Time: 0 0 0 End Time: 0 0 0 Min Calculation Time: 60.0000 0.1000 30.0000 Max Calculation Time: 60.0000 0.1000 30.0000 Vear Month Day Vear Month Day Year Month Day Hour [hr] Time I Year Month Day Image: Colspan="4">O	0.0000
Run Date/Time: 5/22/2019 12:10:59 PM Program Version: ICPR4 4.03.02.00 Run Mode: Normal Run Mode: Normal Run Mode: Normal Year Month Day Start Time: 0 0 0 End Time: 0 0 0 0 Min Calculation Time: 60.0000 0.1000 30.0000 Cutput Time Increments Max Calculation Time: Month Day Hour [hr] Time I Year Month Day June [hr] Time I Year Month Day Hour [hr] Time I 0 0 0 0.0000 0	0.0000
Program Version: ICPR4 4.03.02.00 General General Run Mode: Normal Run Mode: Normal Year Month Day Bit of the state	0.0000
General Run Mode: Normal Year Month Day Start Time: 0 0 0 End Time: 0 0 0 0 Hydrology [sec] Surface Hydraulics [sec]	0.0000
Run Mode: Normal Year Month Day Start Time: 0 0 0 End Time: 0 0 0 0 Hydrology [sec] Surface Hydraulics [sec]	0.0000
Year Month Day Start Time: 0 0 0 End Time: 0 0 0 Min Calculation Time: 60.0000 0.1000 Max Calculation Time: 60.0000 0.1000 Max Calculation Time: 60.0000 0.1000 Max Calculation Time: 60.0000 0.1000 Very Month Day Hydrology Year Month Day Hour [hr] Time Increments Output Time Increments Year Month Day 0 0.0000 0	0.0000
Start Time: 0 0 0 End Time: 0 0 0 0 Hydrology [sec] Surface Hydraulics [sec] [sec] 0 0 Min Calculation Time: 60.0000 0.1000 0.1000 0.1000 0 0 Max Calculation Time: 60.0000 0.1000 30.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0000 0	0.0000
End Time: 0 0 0 Hydrology [sec] Surface Hydraulics [sec]	
Hydrology [sec] Surface Hydraulics [sec] Min Calculation Time: 60.0000 0.1000 Max Calculation Time: 30.0000 0 Output Time Increments Hydrology Year Month Day Hour [hr] Time I 0 0 0 0.0000 0	30.0000
Image: Sec] Image: Sec] Min Calculation Time: 60.0000 0.1000 Max Calculation Time: 30.0000 0 Output Time Increments Output Time Increments Year Month Day Hour [hr] Time I 0 0 0 0.00000 0	
Image: Sec] Image: Sec] Min Calculation Time: 60.0000 0.1000 Max Calculation Time: 30.0000 0 Output Time Increments Pream Month Day Hour [hr] Time Increments 0 0 0.00000 0	
Min Calculation Time: 60.0000 0.1000 Max Calculation Time: 30.0000 Output Time Increments Hydrology Year Month Day Hour [hr] Time I 0 0 0.0000 0 0.0000	
Max Calculation Time: 30.0000 Output Time Increments Hydrology Year Month Day Hour [hr] Time Increments 0 0 0 0.00000 1	
Output Time Increments Hydrology Year Month Day Hour [hr] Time I 0 0 0.00000 1	
Hydrology Year Month Day Hour [hr] Time I 0 0 0.00000 0	
YearMonthDayHour [hr]Time I0000.0000	
YearMonthDayHour [hr]Time I0000.0000	
0 0 0 0.0000	
	ncrement [min]
Surface Hydraulics	15.0000
Year Month Day Hour [hr] Time I	ncrement [min]
0 0 0 0.0000	15.0000
Destant File	
Restart File Save Restart: False	
Resources & Lookup Tables	
Resources Lookup Tables	
Rainfall Folder: Boundary Stage Set:	
Extern Hydrograph Set:	
Unit Hydrograph Curve Number Set: 1	
Folder:	
Green-Ampt Set:	
Vertical Layers Set:	

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4\

Impervious Set: 1

		Tolerances & Options	
Time Marching:	SAOR	IA Recovery Time:	24.0000 hr
Max Iterations:	6		
Over-Relax Weight Fact:	0.5 dec		
dZ Tolerance:	0.0010 ft	Manual Basin Rain Opt:	Global
Max dZ:	1.0000 ft		
Link Optimizer Tol:	0.0001 ft	Rainfall Name:	~FDOT-1
		Rainfall Amount:	8.00 in
Edge Length Option:	Automatic	Storm Duration:	1.0000 hr
		Dflt Damping (1D):	0.0050 ft
		Min Node Srf Area	100 ft2
		(1D):	
		Energy Switch (1D):	Energy

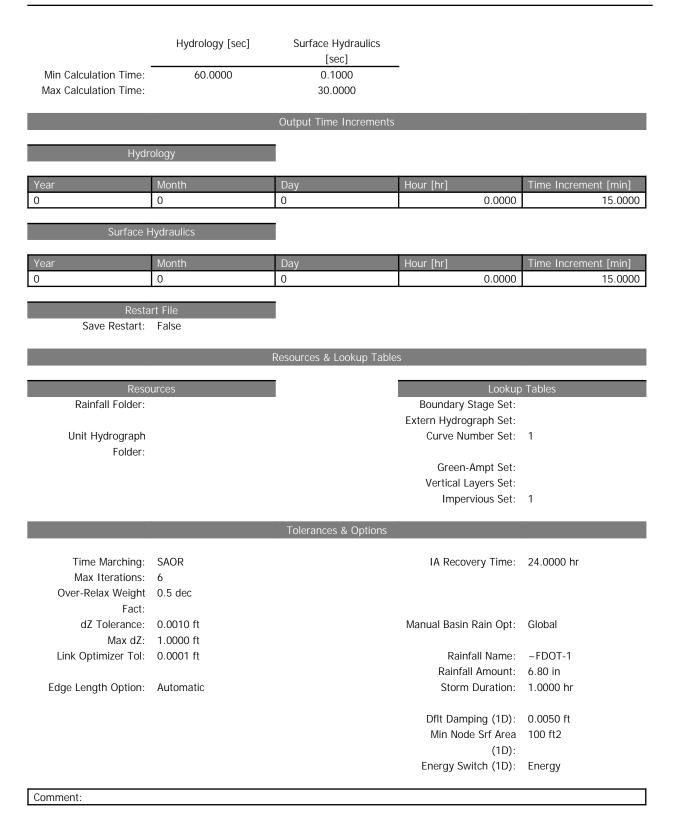
Simulation: 10yr				
Scenario:	Scenario1			
Run Date/Time:	5/22/2019 12:11:04 PM	1		
Program Version:	ICPR4 4.03.02.00			
		General		
Run Mode:	Normal			
	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	30.0000
	Hydrology [sec]	Surface Hydraulics		
		[sec]	_	
Min Calculation Time:	60.0000	0.1000	-	
Max Calculation Time:		30.0000		
		Output Time Increments		
		_		
Hydr	ology			
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
		_		
Surface H	Hydraulics			

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4\

5/22/2019 12:12

7

Cross Drain 4, 4A, 4B, and 4C Input Report


Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
	·			
	rt File			
Save Restart:	False			
		Resources & Lookup Table		
		Resources & Lookup Table	.5	
Reso	urces		Lookup	Tables
Rainfall Folder:	-	-	Boundary Stage Set:	
			Extern Hydrograph Set:	
Unit Hydrograph			Curve Number Set:	1
Folder:				
			Green-Ampt Set:	
			Vertical Layers Set:	
			Impervious Set:	1
		Tolerances & Options		
Time Marching:	SAOR		IA Recovery Time:	24.0000 hr
Max Iterations:	6			
Over-Relax Weight	0.5 dec			
Fact:				
dZ Tolerance:	0.0010 ft		Manual Basin Rain Opt:	Global
Max dZ:	1.0000 ft			
Link Optimizer Tol:	0.0001 ft		Rainfall Name:	~FDOT-1
			Rainfall Amount:	5.90 in
Edge Length Option:	Automatic		Storm Duration:	1.0000 hr
Edge Length Option:	Automatic		Storm Duration:	1.0000 hr
Edge Length Option:	Automatic		Storm Duration: Dflt Damping (1D):	1.0000 hr 0.0050 ft
Edge Length Option:	Automatic		Storm Duration: Dflt Damping (1D): Min Node Srf Area	1.0000 hr
Edge Length Option:	Automatic		Storm Duration: Dflt Damping (1D):	1.0000 hr 0.0050 ft

Comment:

ulation: 25yr				
Scenario:	Scenario1			
Run Date/Time:	5/22/2019 12:11:12 PM			
Program Version:	ICPR4 4.03.02.00			
		General		
Run Mode:	Normal			
	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	30.0000

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4\

Cross Drain 4, 4A, 4B, and 4C Input Report

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4\

Simulation: 50yr				
Scenario:	Scenario1			
Run Date/Time:	5/22/2019 12:11:17 PM			
Program Version:	ICPR4 4.03.02.00			
		Conorol		
Run Mode:	Normal	General		
Run moue.	Normai			
	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	30.0000
	Hydrology [sec]	Surface Hydraulics [sec]		
Min Calculation Time:	60.0000	0.1000		
Max Calculation Time:	0010000	30.0000		
		Output Time Increments		
Hydr	ology	I		
Maan	Maath	Dav		Time Increment Incip]
Year 0	Month 0	Day 0	Hour [hr] 0.0000	Time Increment [min] 15.0000
0	0	0	0.0000	13.0000
Surface H	Hydraulics	I		
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
	rt File	I		
Save Restart:	False			
		Resources & Lookup Tables	ŝ	
		_		
	urces			Tables
Rainfall Folder:			Boundary Stage Set:	
			Extern Hydrograph Set:	4
Unit Hydrograph Folder:			Curve Number Set:	1
Fuluel.			Green-Ampt Set:	
			Vertical Layers Set:	
			Impervious Set:	1
		Tolerances & Options		
Time Marching:	SAOR		IA Recovery Time:	24.0000 hr
Max Iterations:	6		· · · · ·	
Over-Relax Weight	0.5 dec			
Fact:				
dZ Tolerance:	0.0010 ft		Manual Basin Rain Opt:	Global

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4\

5/22/2019 12:12

Max dZ:	1.0000 ft		
Link Optimizer Tol:	0.0001 ft	Rainfall Name:	~FDOT-1
		Rainfall Amount:	7.30 in
Edge Length Option:	Automatic	Storm Duration:	1.0000 hr
		Dflt Damping (1D):	0.0050 ft
		Min Node Srf Area	100 ft2
		(1D):	
		Energy Switch (1D):	Energy

Comment:

^{5/22/2019 12:12}

Cross Drain 4, 4A, 4B, and 4C Node Max Report

Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta	Max Total Inflow	Max Total Outflow	Max Surface Area
				Stage [ft]	[cfs]	[cfs]	[ft2]
CD-4 Upstream	100yr	109.00	107.38	0.0010	953.49	54.62	790694
Downstream	100yr	108.00	104.92	0.0003	831.25	0.00	3132348
Floodplain							
Lake	100yr	108.00	<mark>105.68</mark>	0.0005	110.34	0.00	402426
Pond 1A1	100yr	109.00	<mark>107.20</mark>	0.0074	152.47	44.88	318824
Pond 1A2	100yr	108.00	106.74	0.0007	79.47	5.22	160752
CD-4 Upstream	10yr	109.00	106.48	0.0010	667.20	34.92	746488
Downstream	10yr	108.00	104.55	0.0003	537.05	0.00	3114051
Floodplain							
Lake	10yr	108.00	104.93	0.0005	77.75	0.00	383555
Pond 1A1	10yr	109.00	106.43	0.0074	107.46	40.12	307553
Pond 1A2	10yr	108.00	106.24	0.0006	56.08	2.85	157063
CD-4 Upstream	25yr	109.00	106.86	0.0010	789.74	43.71	762420
Downstream	25yr	108.00	104.71	0.0003	661.34	0.00	3121761
Floodplain							
Lake	25yr	108.00	<mark>105.24</mark>	0.0005	91.74	0.00	395820
Pond 1A1	25yr	109.00	<mark>106.77</mark>	0.0074	126.73	42.25	312499
Pond 1A2	25yr	108.00	106.47	0.0007	66.11	3.97	158740
CD-4 Upstream	50yr	109.00	107.08	0.0010	858.00	48.42	772783
Downstream	50yr	108.00	104.79	0.0003	731.49	0.00	3126137
Floodplain							
Lake	50yr	108.00	<mark>105.42</mark>	0.0005	99.48	0.00	398585
Pond 1A1	50yr	109.00	106.95	0.0074	137.45	43.36	315135
Pond 1A2	50yr	108.00	106.59	0.0007	71.67	4.50	159634

K

Node Max Conditions [Scenario1]

Tailwater elevations used in HY-8 for CD-4A, CD-4B, and CD-4 Post

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4\

5/22/2019 15:25

1

Cross Drain 4, 4A, 4B, and 4C Link Max Report

Max Avg Velocity Link Name Max Flow [cfs] Min Flow [cfs] Min/Max Delta Flow Max Us Velocity Max Ds Velocity Sim Name CD-4 100yr 54.62 -44.04 3.19 5.46 -6.36 CD-4A 100yr 4.15 0.00 1.42 2.88 4.91 CD-4B 100yr 2.35 -5.57 -0.09 -3.15 -4.37 CD-4C 100yr 7.36 8.15 0.00 -0.01 4.17 10yr CD-4 34.92 -39.70 2.01 -3.97 -6.24 CD-4A 10yr 1.56 0.00 0.65 2.16 3.76 1.29 -0.07 1.79 3.00 CD-4B 10yr -1.89 CD-4C 10yr 3.00 0.00 -0.01 2.61 6.40 CD-4 25yr 43.71 -41.65 2.71 4.37 -6.30 2.66 0.00 2.50 4.37 CD-4A 25yr 1.09 CD-4B 25yr 1.80 -3.62 -2.28 -3.79 -0.10 CD-4C 0.00 -0.01 3.07 7.33 25yr 4.89 48.42 CD-4 50yr -42.66 2.92 4.84 -6.33 CD-4A 50yr 3.31 0.00 1.23 2.67 4.63 CD-4B 50yr 2.04 -4.49 -0.09 -2.57 -4.12 CD-4C 50yr 5.94 0.00 -0.01 3.40 7.72

Link Min/Max Conditions [Scenario1]

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 4\

5.46

3.90

-3.75

6.16

-5.01

2.96

2.34

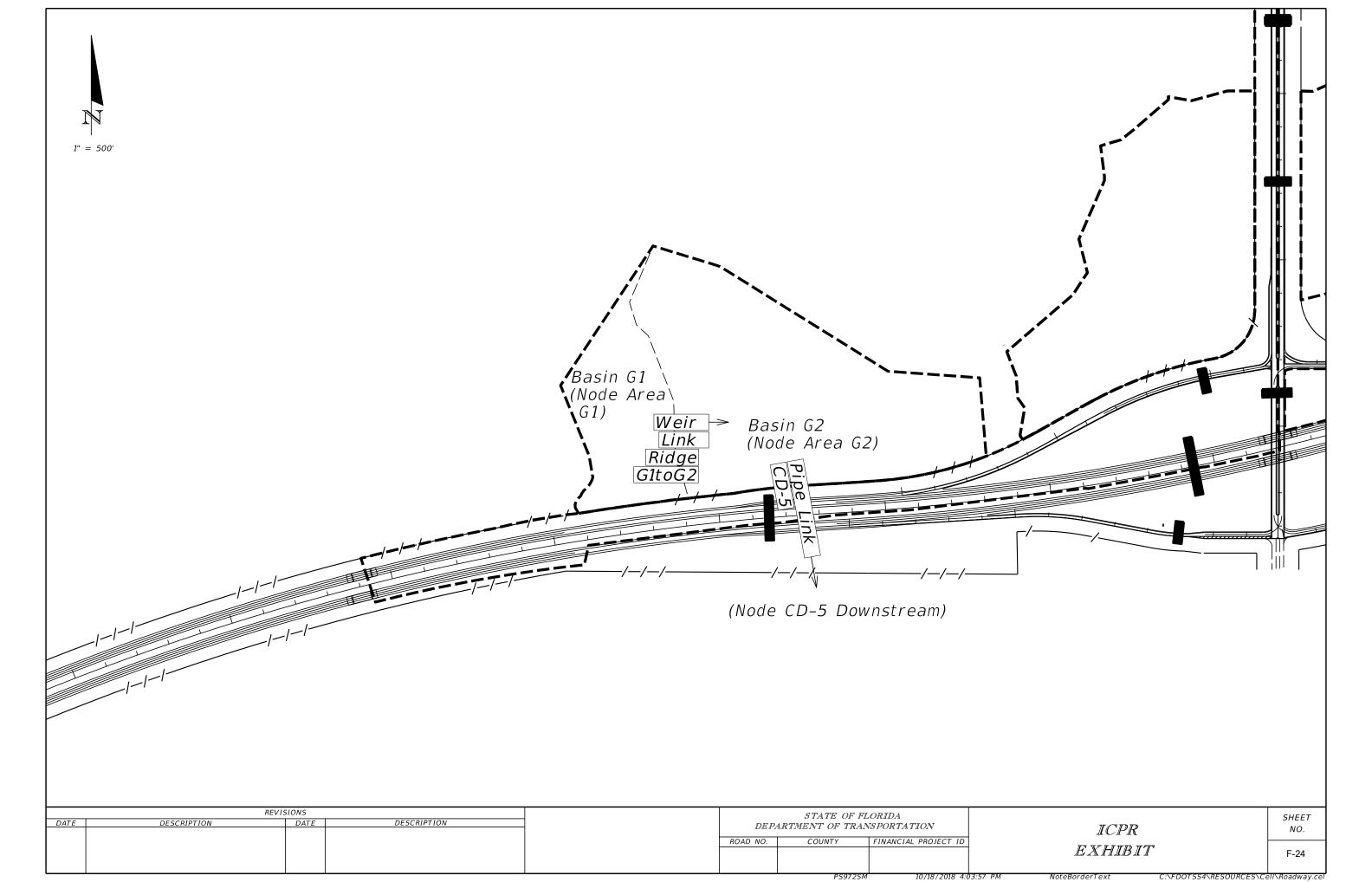
4.50

-5.09

3.43

-3.03

5.20


-5.13

3.65

-3.34

5.56

F-23

Cross Drain 5 Input Report

Manual Basin: Basin G1				
Scenario:	Scenario1			
Node:	Area G1			
Hydrograph Method:	NRCS Unit Hydrog	jraph		
Infiltration Method:	Curve Number			
Time of Concentration:	23.2000 min	23.2000 min		
Max Allowable Q:	0.00 cfs			
Time Shift:	0.0000 hr			
Unit Hydrograph:	UH256			
Peaking Factor:	256.0			
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name	
14.0400 1		1		

Comment:

Manual Basin: Basin G2			
Scenario:	Scenario1		
Node:	Area G2		
Hydrograph Method:	NRCS Unit Hydrog	jraph	
Infiltration Method:	Curve Number		
Time of Concentration:	49.2000 min		
Max Allowable Q:	0.00 cfs		
Time Shift:	0.0000 hr		
Unit Hydrograph:	UH256		
Peaking Factor:	256.0		
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name
43.1600 1		1	

Comment:

Node: Area G1

Scenario:	Scenario1
Type:	Stage/Area
Base Flow:	0.00 cfs
Initial Stage:	102.00 ft
Warning Stage:	121.00 ft

Stage [ft]	Area [ac]	Area [ft2]
102.00	0.3300	14375
103.00	0.4000	17424
104.00	0.8000	34848
105.00	1.2900	56192
106.00	1.6800	73181
107.00	2.0000	87120
108.00	2.4100	104980

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 5\

Cross Drain 5 Input Report

Stage [ft]	Area [ac]	Area [ft2]
109.00	2.8400	123710
110.00	3.1000	135036
111.00	3.3600	146362
112.00	4.3300	188615
113.00	4.5500	198198
114.00	4.8000	209088
115.00	4.9900	217364
116.00	5.1900	226076
117.00	5.4200	236095
118.00	5.6900	247856
119.00	5.9900	260924
120.00	6.3400	276170

Comment:

Node: Area G2

Scenario:	Scenario1
Type:	Stage/Area
Base Flow:	0.00 cfs
Initial Stage:	102.00 ft
Warning Stage:	121.00 ft

Stage [ft]	Area [ac]	Area [ft2]
102.00	2.3300	101495
103.00	2.4400	106286
104.00	2.6800	116741
105.00	3.3500	145926
106.00	4.4000	191664
107.00	5.0000	217800
108.00	5.5700	242629
109.00	6.5000	283140
110.00	6.7500	294030
111.00	6.9800	304049
112.00	7.1900	313196
113.00	7.4000	322344
114.00	7.6000	331056
115.00	7.8500	341946
116.00	8.1000	352836
117.00	8.3700	364597
118.00	8.6500	376794
119.00	8.9500	389862
120.00	9.3000	405108

Comment:

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 5\

Node: CD-5 downstream

Scenario:	Scenario1
Type:	Stage/Area
Base Flow:	0.00 cfs
Initial Stage:	103.00 ft
Warning Stage:	105.00 ft

Stage [ft]	Area [ac]	Area [ft2]
103.00	121.0000	5270760
104.00	200.0000	8712000

Comment:

Pipe Link: CD-5		Upst	ream	Dowr	stream
Scenario:	Scenario1	Invert:	105.00 ft	Invert:	103.00 ft
From Node:	Area G2	Manning's N:	0.0120	Manning's N:	0.0120
To Node:	CD-5 downstream	Geometry	y: Circular	Geometr	y: Circular
Link Count:	1	Max Depth:	1.50 ft	Max Depth:	1.50 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	270.00 ft	Op Table:		Op Table:	
FHWA Code:	1	Ref Node:		Ref Node:	
Entr Loss Coef:	0.00	Manning's N:	0.0000	Manning's N:	0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table:	
Energy Switch:	Energy	Ref Node:		Ref Node:	
		Manning's N:	0.0000	Manning's N:	0.0000
Comment:					

Weir Link: RidgeG1toG2		
Scenario:	Scenario1	Bottom Clip
From Node:	Area G1	Default: 0.00 ft
To Node:	Area G2	Op Table:
Link Count:	1	Ref Node:
Flow Direction:	Both	Top Clip
Damping:	0.0000 ft	Default: 0.00 ft
Weir Type:	Broad Crested Vertical	Op Table:
Geometry Type:	Rectangular	Ref Node:
Invert:	105.00 ft	Discharge Coefficients
Control Elevation:	105.00 ft	Weir Default: 2.800
Max Depth:	30.00 ft	Weir Table:
Max Width:	95.00 ft	Orifice Default: 0.600
Fillet:	0.00 ft	Orifice Table:
Comment:		

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 5\

Simulation: 100yr				
Scenario:	Scenario1			
Run Date/Time:	5/29/2019 10:55:37 AM			
Program Version:	ICPR4 4.03.02.00			
Program version.	ICPR4 4.03.02.00			
		General		
Run Mode:	Normal			
	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	2.0000
	Hydrology [sec]	Surface Hydraulics		
	5 65	[sec]		
Min Calculation Time:	60.0000	0.1000	•	
Max Calculation Time:		30.0000		
		Output Time Increments		
			-	
Hydr	ology			
		-		
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
		_		
Surface H	Hydraulics			
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
	art File			
Save Restart:	False			
		Resources & Lookup Tables	S	
Deee			Looluur	Tebles
	ources	1	-	Tables
Rainfall Folder:			Boundary Stage Set:	
Unit Hydrograph			Extern Hydrograph Set: Curve Number Set:	1
Unit Hydrograph Folder:			cuive number set.	I
T Uluel.			Green-Ampt Set:	
			Vertical Layers Set:	
			Impervious Set:	1
			importious set.	
		Tolerances & Options		
Time Marching:	SAOR		IA Recovery Time:	24.0000 hr
Max Iterations:			2	
Over-Relax Weight				
Fact:				
dZ Tolerance:	0.0010 ft		Manual Basin Rain Opt:	Global
			1 ⁻¹	

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 5\

Max dZ:	1.0000 ft		
Link Optimizer Tol:	0.0001 ft	Rainfall Name:	~FDOT-1
		Rainfall Amount:	7.00 in
Edge Length Option:	Automatic	Storm Duration:	1.0000 hr
		Dflt Damping (1D):	0.0050 ft
		Min Node Srf Area	100 ft2
		(1D):	
		Energy Switch (1D):	Energy

Comment:

-				
Simulation: 10yr				
Scenario:	Scenario1			
Run Date/Time:	5/29/2019 10:55:38 AM			
Program Version:	ICPR4 4.03.02.00			
		General		
Run Mode:	Normal	-	-	
	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	2.0000
	Hydrology [sec]	Surface Hydraulics		
Min Optimization Times	(0.0000	[sec]	-	
Min Calculation Time:	60.0000	0.1000		
Max Calculation Time:		30.0000		
		Output Time Increments		
Hydr	ology	1		
Veen	Manda	Deut		Time Incomment Instal
Year 0	Month 0	Day O	Hour [hr] 0.00	Time Increment [min]
	Ů	ļ •	0.0	
Surface H	lydraulics			
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0	
		-		
Resta Save Restart:	rt File			
Save Residit.	1 0130			
		Resources & Lookup Table	25	
Doco	urces			okup Tables
Kesu				

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 5\

Rainfall Folder:

Unit Hydrograph Folder:

Boundary Stage Set: Extern Hydrograph Set: Curve Number Set: 1 Green-Ampt Set:

Vertical Layers Set: Impervious Set: 1

olerances & Options

Time Marching:	SAOR	IA Recovery Time:	24.0000 hr
Max Iterations:	6		
Over-Relax Weight	0.5 dec		
Fact:			
dZ Tolerance:	0.0010 ft	Manual Basin Rain Opt:	Global
Max dZ:	1.0000 ft		
Link Optimizer Tol:	0.0001 ft	Rainfall Name:	~FDOT-1
		Rainfall Amount:	5.20 in
Edge Length Option:	Automatic	Storm Duration:	1.0000 hr
		Dflt Damping (1D):	0.0050 ft
		Min Node Srf Area	100 ft2
		(1D):	
		Energy Switch (1D):	Energy

Comment:

Simulation: 25yr				
Scenario:	Scenario1			
Run Date/Time:	5/29/2019 10:55:39 AM			
Program Version:	ICPR4 4.03.02.00			
	- <u>.</u>	General		
Run Mode:	Normal			
	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	2.0000
	Hydrology [sec]	Surface Hydraulics [sec]		
Min Calculation Time:	60.0000	0.1000		
Max Calculation Time:		30.0000		
		Output Time Increments		
Hydr	ology			

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 5\

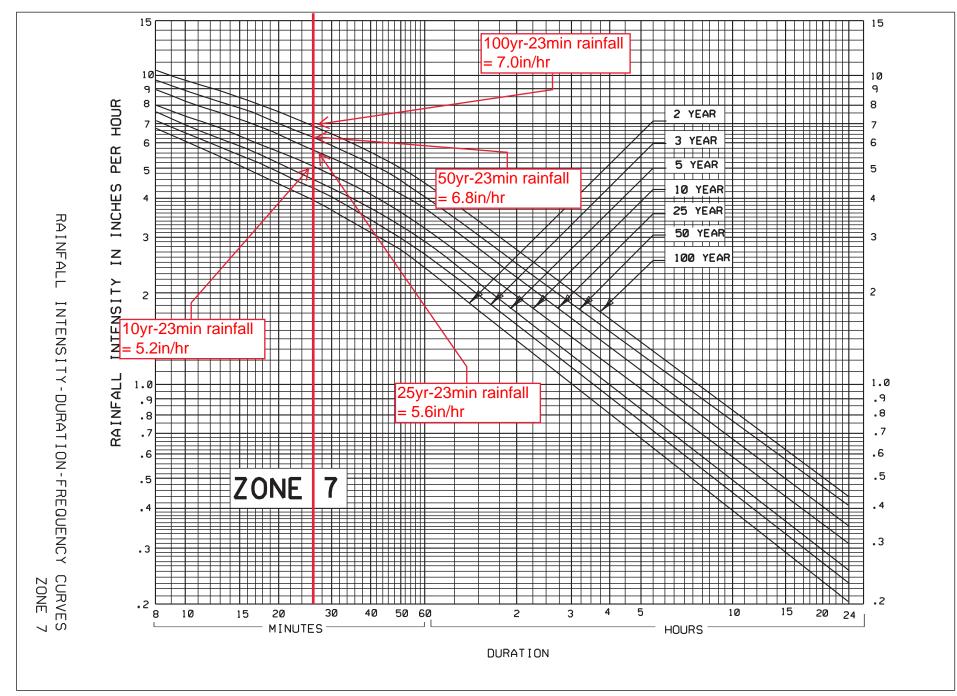
ar	Month	Day	Hour [hr]	Time Increment [min
	0	0	0.0000	15.00
Surface H	lydraulics			
ar	Month	Day	Hour [hr]	Time Increment [min
	0	0	0.0000	15.00
Docto	rt File			
Save Restart:				
		Resources & Lookup Tables	5	
Reso	urces		Lookup	o Tables
Rainfall Folder:			Boundary Stage Set:	
			Extern Hydrograph Set:	
Unit Hydrograph Folder:			Curve Number Set:	1
			Green-Ampt Set:	
			Vertical Layers Set:	
			Impervious Set:	1
		Tolerances & Options		
Time Marching:	SAOR		IA Recovery Time:	24.0000 hr
Max Iterations:	6		-	
Over-Relax Weight	0.5 dec			
Fact:				
dZ Tolerance:	0.0010 ft		Manual Basin Rain Opt:	Global
Max dZ:	1.0000 ft			
	0.0001 ft		Rainfall Name:	~FDOT-1
Link Optimizer Tol:			Rainfall Amount:	5.60 in
Link Optimizer Tol:				
-	Automatic		Storm Duration:	1.0000 hr
Link Optimizer Tol: Edge Length Option:	Automatic		Storm Duration: Dflt Damping (1D):	
	Automatic			
	Automatic		Dflt Damping (1D):	0.0050 ft

Simulation: 50yr Scenario: Scenario1 Run Date/Time: 5/29/2019 10:55:40 AM Program Version: ICPR4 4.03.02.00

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 5\

Cross Drain 5 Input Report

· ·				
		General		
Run Mode:	Normal			
	Voor	Month	Dev	Llour [br]
Start Time:	Year0	Month 0	Day 0	Hour [hr] 0.0000
End Time:	0	0	0	2.0000
End Time:	0	U	0	2.0000
	Hydrology [sec]	Surface Hydraulics		
		[sec]		
Min Calculation Time:	60.0000	0.1000	-	
Max Calculation Time:		30.0000		
		Output Time Increments		
		_	-	-
Hydr	ology			
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.000
Surface	ludroulios			
Surface F	Hydraulics			
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.000
Docto	art File			
Save Restart:				
		Resources & Lookup Table	25	
Reso	ources		Lookup	Tables
Rainfall Folder:		-	Boundary Stage Set:	
			Extern Hydrograph Set:	
Unit Hydrograph			Curve Number Set:	1
Folder:				
			Green-Ampt Set:	
			Vertical Layers Set:	
			Impervious Set:	1
		Tolerances & Options		
Time Marching	SAOR		IA Recovery Time:	24.0000 hr
Time Marching: Max Iterations:	SAUR 6		IA RECOVELY TIME:	∠4.0000 III
Over-Relax Weight	0.5 dec			
Fact:	0.0 000			
dZ Tolerance:	0.0010 ft		Manual Basin Rain Opt:	Global
Max dZ:	1.0000 ft		s se sur spr	
Link Optimizer Tol:	0.0001 ft		Rainfall Name:	~FDOT-1
			Rainfall Amount:	6.80 in
Edge Length Option:	Automatic		Storm Duration:	1.0000 hr

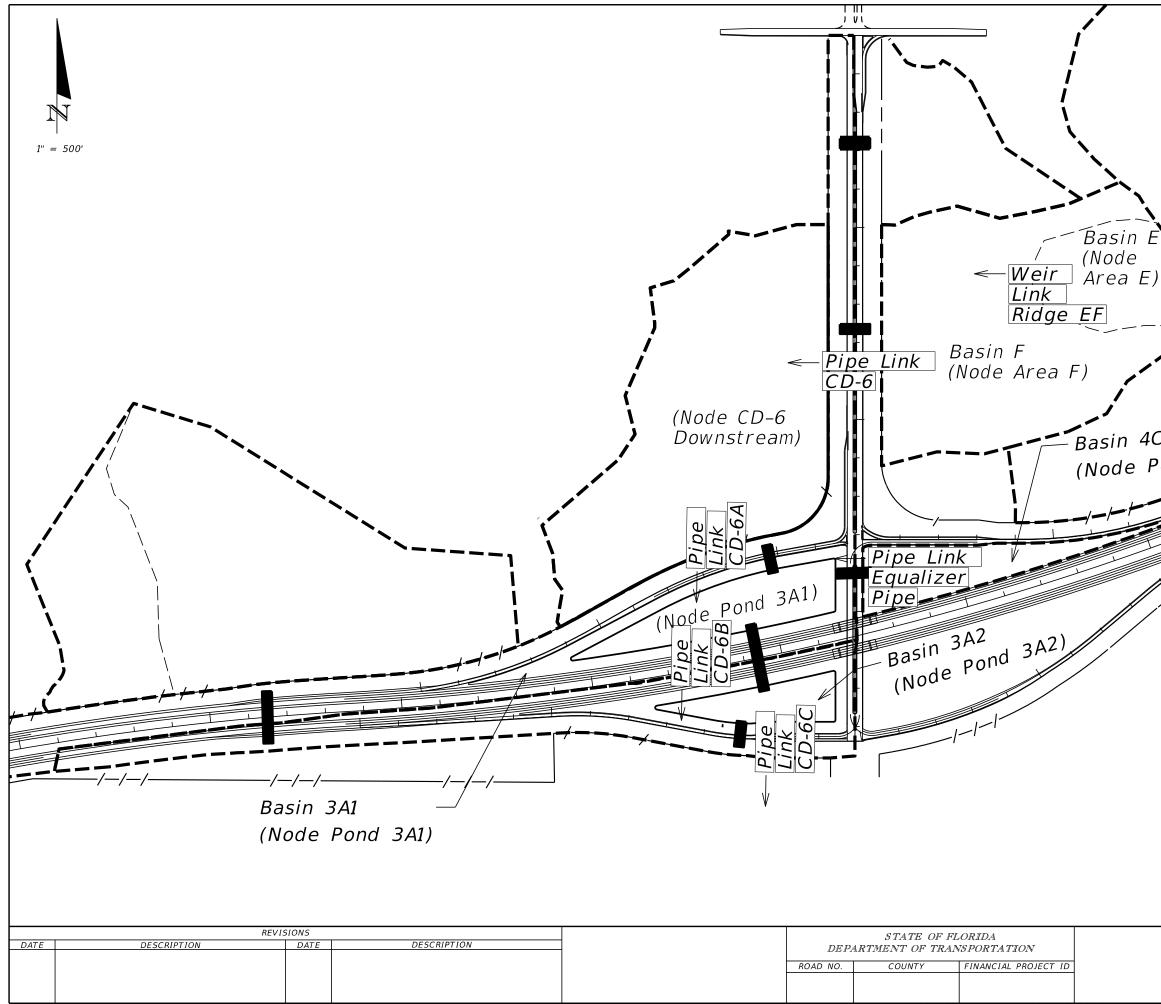

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 5\

Dflt Damping (1D):	0.0050 ft
Min Node Srf Area	100 ft2
(1D):	
Energy Switch (1D):	Energy

Comment:

^{5/29/2019 10:57}

Cross Drain 5 Rainfall Amount used for ICPR



Cross Drain 5 Node Max

Node Max Conditions [Scenario1]

Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta	Max Total Inflow	Max Total Outflow	Max Surface Area
				Stage [ft]	[cfs]	[cfs]	[ft2]
Area G1	100yr	121.00	105.95	0.0010	69.85	48.88	72340
Area G2	100yr	121.00	105.95	0.0010	173.21	10.07	189753
CD-5 downstream	100yr	105.00	103.00	0.0000	<mark>3.10</mark>	0.00	5272966
Area G1	10yr	121.00	105.16	0.0010	45.11	17.76	58988
Area G2	10yr	121.00	104.85	0.0010	89.17	0.00	141597
CD-5 downstream	10yr	105.00	103.00	0.0000	0.00	0.00	5270760
Area G1	25yr	121.00	105.20	0.0010	50.50	24.33	59641
Area G2	25yr	121.00	105.18	0.0010	109.66	5.46	154188
CD-5 downstream	25yr	105.00	103.00	0.0000	0.07	0.00	5270878
Area G1	50yr	121.00	105.85	0.0010	67.05	45.32	70596
Area G2	50yr	121.00	105.85	0.0010	164.61	9.44	185064
CD-5 downstream	50yr	105.00	103.00	0.0000	<mark>2.56</mark>	0.00	5272450

1

C2 ond 4C2)		
	C2 Pond 4C2)	-11
SHEET		SWEET
ICPR NO. EXHIBIT F-36		NO.

Manual Basin: Basin 3A1				
Scenario	Scenario1			
Node	Pond 3A1			
Hydrograph Method	NRCS Unit Hydrog	graph		
Infiltration Method	Curve Number			
Time of Concentration	38.0000 min	38.0000 min		
Max Allowable Q	0.00 cfs	0.00 cfs		
Time Shift	0.0000 hr			
Unit Hydrograph	UH256			
Peaking Factor	256.0			
Area [ac] Land Cove	Zone	Soil Zone	Rainfall Name	
50.0000 3		3		

Comment:

Manual Basin: Basin 3A2				
Scenario	Scenario1			
Node	Pond 3A2			
Hydrograph Method:	NRCS Unit Hydrog	Jraph		
Infiltration Method:	Curve Number			
Time of Concentration:	38.0000 min	38.0000 min		
Max Allowable Q	0.00 cfs			
Time Shift:	0.0000 hr			
Unit Hydrograph:	UH256			
Peaking Factor:	256.0			
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name	
26.3800 3		3		

Comment:

Manual Basin: Basin 4C2				
Scenario:	Scenario1			
Node:	Pond 4C2			
Hydrograph Method:	NRCS Unit Hydrog	jraph		
Infiltration Method:	Curve Number	Curve Number		
Time of Concentration:	10.0000 min			
Max Allowable Q:	0.00 cfs			
Time Shift:	0.0000 hr			
Unit Hydrograph:	UH256			
Peaking Factor:	256.0			
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name	
6.4000 3		3		

Comment:

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 6\

Manual Basin: Basin Downstream 6			
Scenario:	Scenario1		
Node:	CD-6 downstream		
Hydrograph Method:	NRCS Unit Hydrog	jraph	
Infiltration Method:	Curve Number		
Time of Concentration:	37.5000 min		
Max Allowable Q:	0.00 cfs		
Time Shift:	0.0000 hr		
Unit Hydrograph:	UH256		
Peaking Factor:	256.0		
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name
41.7700 2		2	
· · · · · · · · · · · · · · · · · · ·			

Comment:

Manual Basin: Basin E				
Scenario:	Scenario1			
Node:	Area E			
Hydrograph Method:	NRCS Unit Hydrog	jraph		
Infiltration Method:	Curve Number			
Time of Concentration:	11.9000 min	11.9000 min		
Max Allowable Q:	0.00 cfs			
Time Shift:	0.0000 hr			
Unit Hydrograph:	UH256			
Peaking Factor:	256.0			
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name	
8.0900 1		1		
		-		

Comment:

Manual Basin: Basin F				
Scenario:	Scenario1			
Node:	Area F			
Hydrograph Method:	NRCS Unit Hydrog	Iraph		
Infiltration Method:	Curve Number			
Time of Concentration:	16.4000 min	16.4000 min		
Max Allowable Q:	0.00 cfs			
Time Shift:	0.0000 hr			
Unit Hydrograph:	UH256			
Peaking Factor:	256.0			
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name	
34.3000 1		1		

Comment:

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 6\

Node: Area E

Scenario1
Stage/Area
0.00 cfs
125.00 ft
132.00 ft

Stage [ft]	Area [ac]	Area [ft2]
125.00	0.3500	15246
126.00	1.5100	65776
127.00	2.6600	115870
128.00	3.7500	163350
129.00	4.5800	199505
130.00	5.9000	257004
131.00	7.4200	323215
132.00	8.0900	352400

Comment:

Node: Area F

Scenario:	Scenario1
Туре:	Stage/Area
Base Flow:	0.00 cfs
Initial Stage:	103.00 ft
Warning Stage:	133.00 ft

Stage [ft]	Area [ac]	Area [ft2]
103.00	0.5900	25700
104.00	0.6900	30056
105.00	0.7900	34412
106.00	1.0100	43996
107.00	1.3100	57064
108.00	1.5500	67518
109.00	1.8800	81893
110.00	2.1500	93654
111.00	2.3600	102802
112.00	2.6000	113256
113.00	2.9100	126760
114.00	3.3500	145926
115.00	4.0000	174240
116.00	5.2000	226512
117.00	6.4600	281398
118.00	7.7500	337590
119.00	9.0500	394218
120.00	10.6400	463478
121.00	12.3300	537095
122.00	13.9100	605920

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 6\

Stage [ft]	Area [ac]	Area [ft2]
123.00	15.4400	672566
124.00	17.3600	756202
125.00	19.5900	853340
126.00	22.1300	963983
127.00	25.2700	1100761
128.00	29.6700	1292425
129.00	31.7600	1383466
130.00	33.1800	1445321
131.00	33.8300	1473635
132.00	34.3000	1494108

Comment:

Node: CD-6 downstreamScenario:Scenario1Type:Stage/AreaBase Flow:0.00 cfsInitial Stage:102.00 ft

Warning Stage: 107.40 ft

Stage [ft]	Area [ac]	Area [ft2]
102.00	0.1000	4356
103.00	8.8600	385942
104.00	9.1100	396832
105.00	9.8200	427759
106.00	13.1100	571072
107.00	15.9300	693911
108.00	17.5400	764042
109.00	19.2000	836352
110.00	21.1400	920858
111.00	23.2900	1014512
112.00	25.4400	1108166
113.00	27.4000	1193544

Comment:

Node: Downstream Floodplain

Scenario:	Scenario1
Type:	Stage/Area
Base Flow:	0.00 cfs
Initial Stage:	103.00 ft
Warning Stage:	105.00 ft

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 6\

Stage [ft]	Area [ac]	Area [ft2]
103.00	121.0000	5270760
104.00	200.0000	8712000

Comment:

Node: Pond 3A1

Scenario:	Scenario1
Type:	Stage/Area
Base Flow:	0.00 cfs
Initial Stage:	103.00 ft
Warning Stage:	109.88 ft

Stage [ft]	Area [ac]	Area [ft2]
103.00	4.3900	191228
104.00	4.6400	202118
105.00	4.9000	213444
106.00	5.1600	224770
107.00	5.4300	236531
108.00	5.7000	248292
109.88	6.7800	295337

Comment:

Node: Pond 3A2

Scenario:	Scenario1
Type:	Stage/Area
Base Flow:	0.00 cfs
Initial Stage:	103.00 ft
Warning Stage:	108.00 ft

Stage [ft]	Area [ac]	Area [ft2]
103.00	2.4800	108029
104.00	2.6600	115870
105.00	2.8500	124146
106.00	3.0400	132422
107.00	3.2300	140699
108.00	3.4300	149411

Comment:

Node: Pond 4C2

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 6\

Scenario:	Scenario1
Type:	Stage/Area
Base Flow:	0.00 cfs
Initial Stage:	104.00 ft
Warning Stage:	115.00 ft

Stage [ft]	Area [ac]	Area [ft2]
104.00	1.4100	61420
105.00	1.5500	67518
106.00	1.7000	74052
107.00	1.8500	80586
108.00	2.0100	87556
109.00	2.1800	94961
110.00	2.3500	102366
111.00	2.5200	109771
112.00	2.6900	117176
113.00	2.8600	124582
114.00	3.0400	132422
115.00	3.2200	140263

Comment:

Pipe Link: CD-6		Upst	ream	Dowr	nstream
Scenario:	Scenario1	Invert:	103.00 ft	Invert:	102.00 ft
From Node:	Area F	Manning's N:	0.0120	Manning's N:	0.0120
To Node:	CD-6 downstream	Geometry	y: Circular	Geometi	ry: Circular
Link Count:	1	Max Depth:	3.50 ft	Max Depth:	3.50 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	160.00 ft	Op Table:		Op Table:	
FHWA Code:	1	Ref Node:		Ref Node:	
Entr Loss Coef:	0.00	Manning's N:	0.0000	Manning's N:	0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table:	
Energy Switch:	Energy	Ref Node:		Ref Node:	
		Manning's N:	0.0000	Manning's N:	0.0000
Comment:					

Pipe Link: CD-6AUpstreamDownstreamScenario:Scenario1Invert:105.00 ftInvert:104.90 ftFrom Node:CD-6 downstreamManning's N:0.0120Manning's N:0.0120To Node:Pond 3A1Geometry: CircularGeometry: CircularLink Count:1Max Depth:2.00 ftMax Depth:2.00 ftFlow Direction:BothEothBottom ClipEothEoth

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 6\

Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	150.00 ft	Op Table:		Op Table:	
FHWA Code:	1	Ref Node:		Ref Node:	
Entr Loss Coef:	0.00	Manning's N:	0.0000	Manning's N:	0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table:	
Energy Switch:	Energy	Ref Node:		Ref Node:	
		Manning's N:	0 0000	Manning's N:	0.0000

Pipe Link: CD-6B		Upst	ream	Down	stream
Scenario:	Scenario1	Invert:	105.00 ft	Invert:	104.50 ft
From Node:	Pond 3A1	Manning's N:	0.0120	Manning's N:	0.0120
To Node:	Pond 3A2	Geometry	: Circular	Geometr	y: Circular
Link Count:	1	Max Depth:	2.50 ft	Max Depth:	2.50 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	350.00 ft	Op Table:		Op Table:	
FHWA Code:	1	Ref Node:		Ref Node:	
Entr Loss Coef:	0.00	Manning's N:	0.0000	Manning's N:	0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table:	
Energy Switch:	Energy	Ref Node:		Ref Node:	
		Manning's N:	0.0000	Manning's N:	0.0000
Comment:					

Pipe Link: CD-6C		Upst	ream	Dowr	istream
Scenario:	Scenario1	Invert:	103.00 ft	Invert:	102.90 ft
From Node:	Pond 3A2	Manning's N:	0.0120	Manning's N:	0.0120
To Node:	Downstream	Geometry	y: Circular	Geometr	y: Circular
	Floodplain	Max Depth:	2.00 ft	Max Depth:	2.00 ft
Link Count:	1			Bottom Clip	
Flow Direction:	Both	Default:	0.00 ft	Default:	0.00 ft
Damping:	0.0000 ft	Op Table:		Op Table:	
Length:	130.00 ft	Ref Node:		Ref Node:	
FHWA Code:	1	Manning's N:	0.0000	Manning's N:	0.0000
Entr Loss Coef:	0.00			Top Clip	
Exit Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft
Bend Loss Coef:	0.00	Op Table:		Op Table:	
Bend Location:	0.00 ft	Ref Node:		Ref Node:	
Energy Switch:	Energy	Manning's N:	0.0000	Manning's N:	0.0000
Comment:					

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 6\

Pipe Link: Equalizer I	Dino		ream	Dou	Instream
Scenario:	Scenario1	Invert:	105.00 ft	Inver	:: 104.90 ft
From Node:	Pond 4C2	Manning's N:	0.0120	Manning's N	: 0.0120
To Node:	Pond 3A1	Geometry	y: Circular	Geome	try: Circular
Link Count:	1	Max Depth:	2.50 ft	Max Depth	: 2.50 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Defaul	:: 0.00 ft
Length:	180.00 ft	Op Table:		Op Table	:
FHWA Code:	1	Ref Node:		Ref Node	:
Entr Loss Coef:	0.00	Manning's N:	0.0000	Manning's N	: 0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default	:: 0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table	:
Energy Switch:	Energy	Ref Node:		Ref Node	:
		Manning's N:	0.0000	Manning's N	: 0.0000
Comment:					

Weir Link: Ridge EF

Weir Link: Ridge EF		
Scenario:	Scenario1	Bottom Clip
From Node:	Area E	Default: 0.00 ft
To Node:	Area F	Op Table:
Link Count:	1	Ref Node:
Flow Direction:	Both	Top Clip
Damping:	0.0000 ft	Default: 0.00 ft
Weir Type:	Broad Crested Vertical	Op Table:
Geometry Type:	Rectangular	Ref Node:
Invert:	126.00 ft	Discharge Coefficients
Control Elevation:	126.00 ft	Weir Default: 2.800
Max Depth:	30.00 ft	Weir Table:
Max Width:	315.00 ft	Orifice Default: 0.600
Fillet:	0.00 ft	Orifice Table:
Comment:		

Scenario: Scenario1 Run Date/Time: 5/29/2019 8:44:41 AM Program Version: ICPR4 4.03.02.00 Run Mode: Normal Year Month Day Hour [hr] Start Time: 0 0 0 0.0000 End Time: 0 0 0 30.0000

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 6\

	[sec]	_	
60.0000	0.1000 30.0000		
	Output Time Increments		
blogy			
Month	Day	Hour [hr]	Time Increment [min]
0	0	0.0000	15.0000
lydraulics			
Month	Day	Hour [hr]	Time Increment [min]
0	0	0.0000	15.0000
rt File			
False			
	Resources & Lookup Table	2S	
urces		Lookup	Tables
		Boundary Stage Set:	
			1
		-	
		Impervious Set:	1
	Tolerances & Options		
SAOR		IA Recovery Time:	24.0000 hr
6		in the severy finne.	21.000011
0.5 dec			
0.0010 ft		Manual Basin Rain Opt:	Global
		Deinfall Name	~FDOT-1
0.000111			8.70 in
Automatic		Storm Duration:	1.0000 hr
		Dflt Damping (1D):	0.0050 ft
		Min Node Srf Area	100 ft2
		(1D): Energy Switch (1D):	Energy
	Month 0 lydraulics Month 0 rt File False urces SAOR 6 0.5 dec 0.0010 ft 1.0000 ft 0.0001 ft	SAOR 6 0.0010 ft 1.0000 ft 0.0010 ft 1.0000 ft 0.0011 ft	30.000 30.000 Output Time Increments plogy Month Day Hour [h] 0 0 0.0000 ydraulics Output Time Increments Month Day Hour [hr] 0 0 0.0000 Ydraulics Hour [hr] Output [hr] 0 0 0.0000 Resources & Lookup Tables Lookup Boundary Stage Set: Extern Hydrograph Set: Curve Number Set: Curve Number Set: Vertical Layers Set: SAOR In Recovery Time: 6 0.0010 ft Manual Basin Rain Opt: 1.0000 ft Manual Basin Rain Opt: 1.0000 ft Storm Duration: Dift Damping (1D): Manual Basin Rain Opt: Loth colspan="2">Manual Basin Rain Opt: Internet Storm Duration:

Sinulation: 10y Scenario: Scenario1 Run Date/Time: 1/29/2019 E.41.47 AM Program Version: ICPR4 4.03.02.00 Central Run Mode: Normal <u>Year Month Day Hour [hr]</u> Start Time: 0 0 0 0 0 0.0000 End Time: 0 0 0 0 0.0000 Hydrology [see] Surface Hydraulics <u>[sec]</u> Min Calculation Time: 60.0000 0.1000 Max Calculation Time: 60.0000 0.0000 Utput Time Increments Hydrology Year Month Day Hour [hr] Time Increment[min] 0 0 0 0.0000 Time Increment[min] 0 0 0 0.0000 Time Increment[min] Verse Month Day Hour [hr] Time Increment[min] Surface Hydrology Year Month Day Hour [hr] Time Increment[min] 0 0 0 0 0.0000 Time Increment[min] Surface Hydrology Year Month Day Hour [hr] Time Increment[min] 0 0 0 0 0.0000 Time Increment[min] Surface Hydrology Year Month Day Hour [hr] Could Time Increment[min] Curve Number Set: 2 Surface Hydrology Surface Hydrology Hour [hr] Could Tables Boundary Stage Set: Extern Hydrograph Folde: Curve Number Set: 1 Curve Number Set: 1 Curve Number Set: 1 Toterances & Options Time Marching: SAOR Max Iteration: 6 Over-Relax Weight 0.5 dec Fac: dZ Tolerance: 0.0010 ft Marcal Basin Rain Opt: Global	Cross Drains 6, 6A, 6B a	na 60 input Report			10
Scenario Scenario Run Date/Time: 5/29/2019 8:44:47 AM Program Varsion: ICIPRA 4.03.02.00 Run Mode: Normal Start Time: 0 0 0.0000 End Time: 0 0 0.0000 End Time: 0 0 0.0000 End Time: 0 0 0.0000 Min Calculation Time: 60.0000 0.1000 30.0000 Min Calculation Time: 60.0000 0.1000 30.0000 Max Calculation Time: 60.0000 0.1000 30.0000 Output Time Increments Provide Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Surface Hydraulics Surface Hydraulics Surface Restart: False Restart File Sure Restart: False Corve Number Set: 1 Corve Number Set: 2 Corven-Ampl Set: Vertical LayerSet:	Simulation, 10ur				
Bun Date/Time: 5/29/2019 8:44:47.40M Program Version: ICPR4 4.03.02.00 Run Mode: Normal Quart Month Day Hour [hr] Start Time: Quart Month Day Hour [hr] Start Time: Quart Month Day Hour [hr] Bit of Time: Quart of the start of t		Scopario1			
Program Version: ICPRe4 4.03.02.00 Run Mode: Normal Start Time: 0 0 0 0.0000 End Time: 0 0 0 0.0000 0.0000 End Time: 0 0 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 15.0000 Vear Month Day Hour [hr] Time Increment [min] 0 0.0000 15.0000 Surface Hydraulies Executes Resources & Lookup Tables Executes Executes Executes Executes Executes Executes Executes Executes Executes Imme Increment [min] Corkup Tables Executes Imme Increment [min] Corkup Tables Executes <th< td=""><td></td><td></td><td></td><td></td><td></td></th<>					
General General Run Mode: Normal Start Time: 0 0 0.0000 End Time: 0 0 0 0.0000 End Time: 0 0 0 0.0000 Min Calculation Time: 60.0000 0.1000 30.0000 Max Calculation Time: 60.0000 0.1000 1me Increments Hydrology Year Month Day Hour [ht] Ime Increment [min] 0 0 0 0.0000 15.0000 Surface Hydraulics Year Month Day Hour [ht] Ime Increment [min] 0 0 0 0.0000 15.0000 Surface Hydraulics Save Restart: False Boundary Stage Set: Extern Hydrograph Set: Curkup Tables Boundary Stage Set: Extern Hydrograph Set: Curkup Tables Green-Ampl Set: Impervious Set: 1 Folder: Coleances & Options In Recovery					
Run Mode: Normal Start Time: 0 0 0 0.0000 End Time: 0 0 0 0.0000 End Time: 0 0 0 0.0000 Min Calculation Time: 60.0000 0.1000 30.0000 Max Calculation Time: 60.0000 0.1000 30.0000 Output Time Increments Hydrology Vear Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Surface Hydraulics Year Month Day Hour [hr] Time Increment [min] 0 0 0 0 0.0000 15.0000 Surface Hydraulics Year Month Day Hour [hr] Time Increment [min] 0 0 0 0 0.0000 15.0000 Rainfall Folder: False False B	r og an roroioin				
Year Month Day Hour [hr] End Time: 0 0 0.0000 Min Calculation Time: 60.0000 0.1000 30.0000 Max Calculation Time: 60.0000 0.1000 30.0000 Output Time Increments Hydrology Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Surface Hydraulies Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Surface Hydraulies Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 15.0000 Resources Resources & Lookup Tables Extern Hydrograph Set: Extern Hydrograph Set: Curve Numer Set: 1 Folder: Folder: Green-Ampt Set: Year(Jayers Set: 1 Unit Hydrograph Set			General		
Start Time: 0 0 0 0 0.0000 Hydrology [sec] Surface Hydraulics [sec]	Run Mode:	Normal			
Start Time: 0 0 0 0 0.0000 Hydrology [sec] Surface Hydraulics [sec]					
End Time: 0 0 30.000 Hiddrology [sec] Surface Hydraulics [sec]					
Hydrology [sec] Surface Hydraulics [sec] Min Calculation Time: 60.0000 0.1000 Max Calculation Time: 30.000 Output Time Increments Hydrology Month Day Hour [nr] Time Increment [rmin] Vear Month Day Hour [nr] Time Increment [rmin] O O O 0.0000 15.0000 Surface Hydraulics Vear Month Day Hour [nr] Time Increment [rmin] Vear Month Day Hour [nr] Time Increment [rmin] O O O O O O Surface Hydraulics Essenter Time Increment [rmin] O Output Tables Essenter Essenter Essenter Resources & Lookup Tables Boundary Stage Set: Extern Hydrograph S					
Min Calculation Time: 60.000 0.1000 Max Calculation Time: 60.0000 30.0000 Utput Time Increments Hydrology Year Month Day Hour [hr] Time Increment [min] 0 0 0.0000 15.0000 Surface Hydraulics Time Increment [min] Time Increment [min] 0 0 0.0000 15.0000 Surface Hydraulics Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Restart File Save Restart: False Boundary Stage Set: Extern Hydrograph Set: Extern Hydrograph Set: Extern Hydrograph Set: Vertical Layers Set: Impervious Set: 1 Folder: Folders: Curve Number Set: Impervious Set: 1 Therm Amerching: SAOR Impervious Set: 1 Curve Number Set: Year Unit Hydrograph Folder: Stree Set	End Time:	0	0	0	30.0000
Min Calculation Time: 60.0000 0.1000 Max Calculation Time: 00.0000 0.1000 Output Time Increments Hydrology Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Surface Hydraulics Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Restart File Save Restart: False Resources & Lookup Tables Resources & Lookup Tables Rainfall Folder: Extern Hydrograph Set: Extern Hydrograph Set: Curve Number Set: 1 Green-Ampt Set: Vertical Layers Set: 1 Impervious Set: 1 Time Marching: SAOR Max Iterations: 6 Over-Relax Weight 0.5 dec Fact:		Hydrology [sec]			
Max Calculation Time: 30.000 Output Time Increments Hydrology Year Month Day Hour [hr] Ime Increment [min] 0 0 0.0000 15.0000 Surface Hydraulics Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Resources & Lookup Tables Resources & Lookup Tables Resources & Lookup Tables Resources & Lookup Tables Rainfall Folder: Extern Hydrograph Set Extern Hydrograph Set <t< td=""><td>Min Calculation Time:</td><td>60.000</td><td></td><td></td><td></td></t<>	Min Calculation Time:	60.000			
Output Time Increments Hydrology Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Surface Hydraulics Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Resources & Lookup Tables Resources & Lookup Tables Save Restart: False Resources & Lookup Tables Rainfall Folder: Lookup Tables Boundary Stage Set: Extern Hydrograph Set: Curve Number Set: 1 Folder: Curve Number Set: 1 Curve Number Set: 1 Unit Hydrograph Set: Set: Set: Set: Set: 1 Tolerances & Options Ime Marching: SAOR IA Recovery Time: 24.0000 hr Max Iteration: 6 Over-Relax Weight IA Recovery Time: 24.0000 hr		00.0000			
Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Surface Hydraulics Vear Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Restrict Hydraulics Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Restart File Save Restart: False Resources & Lookup Tables Resources & Lookup Tables Boundary Stage Set: Curve Number Set: Curve Number Set: Curve Number Set: Curve Number Set: Set: Vertical Layers Set: Impervious Set: 1 Folder: Vertical Layers Set: Impervious Set: 1 Max Iterations: 6 Over-Relax Weight 0.5 dec Folder: Time Marching: SAOR IA Recovery Time: 24.0000 hr			30.0000		
YearMonthDayHour [hr]Time Increment [min]0000.000015.0000Surface HydraulicsYearMonthDayHour [hr]Time Increment [min]0000.000015.0000Restart FileSave Restart: FalseResources & Lookup TablesRainfall Folder:Lookup TablesRainfall Folder:Extern Hydrograph Set:Unit HydrographGreen-Ampt Set:Folder:Green-Ampt Set:Unit HydrographTolerances & OptionsTolerances & OptionsTaleances & Options			Output Time Increments		
YearMonthDayHour [hr]Time Increment [min]0000.000015.0000Surface HydraulicsYearMonthDayHour [hr]Time Increment [min]0000.000015.0000Restart FileSave Restart: FalseResources & Lookup TablesRainfall Folder:Lookup TablesRainfall Folder:Extern Hydrograph Set:Unit HydrographGreen-Ampt Set:Folder:Green-Ampt Set:Unit HydrographTolerances & OptionsTolerances & OptionsTaleances & Options	Ludr	cology			
0 0 0.0000 15.0000 Surface Hydraulics Surface Hydraulics Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Restart File Save Restart: False Resources & Lookup Tables Resources & Lookup Tables Boundary Stage Set: Extern Hydrograph Set: Unit Hydrograph Green-Ampt Set: 1 Folder: Save Restart SAOR IA Recovery Time: 24.0000 hr Max Iterations: 6 Over-Relax Weight 0.5 dec Fact:	nyui	ology			
0 0 0.0000 15.0000 Surface Hydraulics Surface Hydraulics Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Restart File Save Restart: False Resources & Lookup Tables Resources & Lookup Tables Boundary Stage Set: Extern Hydrograph Set: Unit Hydrograph Green-Ampt Set: 1 Folder: Save Restart SAOR IA Recovery Time: 24.0000 hr Max Iterations: 6 Over-Relax Weight 0.5 dec Fact:	Year	Month	Day	Hour [hr]	Time Increment [min]
Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Restart File Save Restart: False False Resources & Lookup Tables Resources & Lookup Tables Resources Lookup Tables Rainfall Folder: Boundary Stage Set: Extern Hydrograph Set: Curve Number Set: 1 Folder: Green-Ampt Set: Vertical Layers Set: Impervious Set: 1 Time Marching: SAOR IA Recovery Time: 24.0000 hr Max Iterations: 6 Over-Relax Weight 0.5 dec IA Recovery Time: 24.0000 hr					
Year Month Day Hour [hr] Time Increment [min] 0 0 0 0.0000 15.0000 Restart File Save Restart: False False Resources & Lookup Tables Resources & Lookup Tables Resources Lookup Tables Rainfall Folder: Boundary Stage Set: Extern Hydrograph Set: Curve Number Set: 1 Folder: Green-Ampt Set: Vertical Layers Set: Impervious Set: 1 Time Marching: SAOR IA Recovery Time: 24.0000 hr Max Iterations: 6 Over-Relax Weight 0.5 dec IA Recovery Time: 24.0000 hr		8			
0000.000015.0000Restart File Save Restart: FalseResources & Lookup TablesResources & Lookup TablesBoundary Stage Set: Extern Hydrograph Set: Curve Number Set: 1Yortical Layers Set: Folder:Curve Number Set: Vertical Layers Set: Impervious Set: 1Tolerances & OptionsTime Marching: Max Iterations:SAOR 6 Over-Relax WeightIA Recovery Time: 0.5 dec Fact:24.0000 hr	Surface H	Hydraulics			
Restart File Save Restart: False Resources Lookup Tables Rainfall Folder: Boundary Stage Set: Rainfall Folder: Boundary Stage Set: Unit Hydrograph Curve Number Set: Folder: Green-Ampt Set: Vertical Layers Set: Impervious Set: Impervious Set: 1 Tolerances & Options IA Recovery Time: 24.0000 hr Max Iterations: 6 Over-Relax Weight 0.5 dec Fact: Fact: Fact Fact	Year	Month	Day	Hour [hr]	Time Increment [min]
Save Restart: False	0	0	0	0.0000	15.0000
Save Restart: False			-		
Resources & Lookup Tables Resources Lookup Tables Rainfall Folder: Boundary Stage Set: Unit Hydrograph Extern Hydrograph Set: Folder: Green-Ampt Set: Vertical Layers Set: Impervious Set: Impervious Set: 1 Staterations: 6 Over-Relax Weight 0.5 dec Fact: Fact:					
Resources Lookup Tables Rainfall Folder: Boundary Stage Set: Unit Hydrograph Extern Hydrograph Set: Folder: Curve Number Set: Green-Ampt Set: Vertical Layers Set: Impervious Set: 1 Time Marching: SAOR Time Marching: 6 Over-Relax Weight 0.5 dec Fact:	Save Restart:	False			
Resources Lookup Tables Rainfall Folder: Boundary Stage Set: Unit Hydrograph Extern Hydrograph Set: Folder: Curve Number Set: Green-Ampt Set: Vertical Layers Set: Impervious Set: 1 Time Marching: SAOR Time Marching: 6 Over-Relax Weight 0.5 dec Fact:			Posourcos & Lookup Tablo		
Rainfall Folder: Boundary Stage Set: Unit Hydrograph Extern Hydrograph Set: Folder: Curve Number Set: Green-Ampt Set: Vertical Layers Set: Impervious Set: 1 Time Marching: SAOR Max Iterations: 6 Over-Relax Weight 0.5 dec Fact: Fact:			Resources & Lookup Table:	5	
Rainfall Folder: Boundary Stage Set: Unit Hydrograph Extern Hydrograph Set: Folder: Curve Number Set: Green-Ampt Set: Vertical Layers Set: Impervious Set: 1 Time Marching: SAOR Max Iterations: 6 Over-Relax Weight 0.5 dec Fact: Fact:	Resc	ources		Lookur	Tables
Lunit Hydrograph Folder:Extern Hydrograph Set: Curve Number Set: Green-Ampt Set: Vertical Layers Set: Impervious Set: 11StoreStore1Time Marching:SAORIA Recovery Time: 424.0000 hrMax Iterations:6 Over-Relax Weight Fact:0.5 dec Fact:1					
Unit Hydrograph Folder:Curve Number Set:1Folder:Green-Ampt Set:Vertical Layers Set:Vertical Layers Set:Impervious Set:1Tolerances & OptionsTime Marching:SAORIA Recovery Time:24.0000 hrMax Iterations:6Over-Relax Weight0.5 decFact:Fact:					
Green-Ampt Set: Vertical Layers Set: Impervious Set: 1 Time Marching: SAOR IA Recovery Time: 24.0000 hr Max Iterations: 6 Over-Relax Weight 0.5 dec Fact:	Unit Hydrograph				1
Vertical Layers Set: Impervious Set: 1 Time Marching: SAOR IA Recovery Time: 24.0000 hr Max Iterations: 6 Over-Relax Weight 0.5 dec Fact:	Folder:				
Impervious Set: 1 Tolerances & Options 1 Time Marching: SAOR IA Recovery Time: 24.0000 hr Max Iterations: 6 0.5 dec Fact: 5					
Tolerances & Options Time Marching: SAOR IA Recovery Time: 24.0000 hr Max Iterations: 6 Over-Relax Weight 0.5 dec Fact:					
Time Marching:SAORIA Recovery Time:24.0000 hrMax Iterations:6Over-Relax Weight0.5 decFact:				Impervious Set:	1
Max Iterations: 6 Over-Relax Weight 0.5 dec Fact:			Tolerances & Options		
Max Iterations: 6 Over-Relax Weight 0.5 dec Fact:	Timo Marching	SAOD			24 0000 br
Over-Relax Weight 0.5 dec Fact:				TA RECOVELY TIME:	24.0000 III
Fact:					
		0.0 400			
		0.0010 ft		Manual Basin Rain Opt	Global

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 6\

Max dZ:	1.0000 ft		
Link Optimizer Tol:	0.0001 ft	Rainfall Name:	~FDOT-1
		Rainfall Amount:	6.50 in
Edge Length Option:	Automatic	Storm Duration:	1.0000 hr
		Dflt Damping (1D):	0.0050 ft
		Min Node Srf Area	100 ft2
		(1D):	
		Energy Switch (1D):	Energy

Comment:

_				
Simulation: 25yr				
Scenario:	Scenario1			
Run Date/Time:	5/29/2019 8:44:53 AM			
Program Version:	ICPR4 4.03.02.00			
		General		
Run Mode:	Normal			
			-	
	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	30.0000
	Hydrology [sec]	Surface Hydraulics		
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[sec]		
Min Calculation Time:	60.0000	0.1000	-	
Max Calculation Time:		30.0000		
		Output Time Increments		
Hydr	ology			
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.00	000 15.0000
Surface H	Hydraulics			
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.00	15.0000
Resta	ırt File			
Save Restart:				
		Resources & Lookup Table	25	
Reso	urces		l.or	okup Tables

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 6\

Rainfall Folder:

Unit Hydrograph Folder:

Boundary Stage Set: Extern Hydrograph Set: Curve Number Set: 1 Green-Ampt Set:

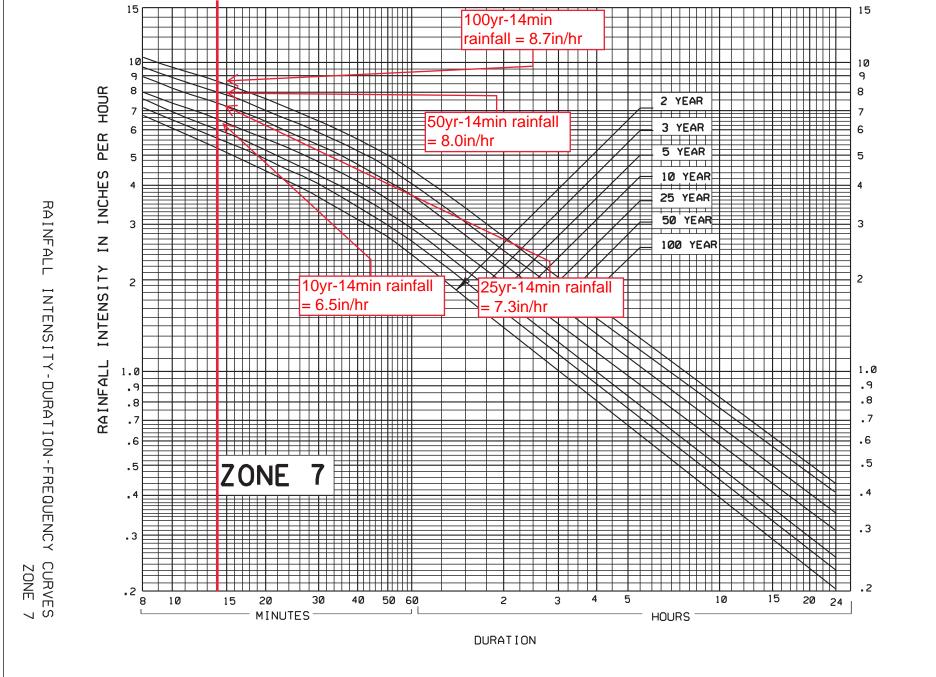
Vertical Layers Set: Impervious Set: 1

olerances & Options

Time Marching: Max Iterations:	SAOR
Over-Relax Weight	0
Fact: d7 Tolerance:	0 0010 ft
	1.0000 ft
Link Optimizer Tol:	0.0001 ft
Edge Length Option:	Automatic

IA Recovery Time:	24.0000 hr
Manual Basin Rain Opt:	Global
Rainfall Name:	~FDOT-1
	7.30 in
Storm Duration:	1.0000 hr
Dflt Damping (1D):	0.0050 ft
Min Node Srf Area	100 ft2
(1D):	
Energy Switch (1D):	Energy

Comment:


Simulation: 50yr				
Scenario:	Scenario1			
Run Date/Time:	5/29/2019 8:44:59 AM			
Program Version:	ICPR4 4.03.02.00			
		General		
Run Mode:	Normal	General		
Run Mode:	Normai			
	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	30.0000
	like da a la sur a fa a a l			
	Hydrology [sec]	Surface Hydraulics		
		[sec]		
Min Calculation Time:	60.0000	0.1000		
Max Calculation Time:		30.0000		
		Output Time Increments		
Hydr	ology	I		

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 6\

ear	Month 0	Day 0	Hour [hr] 0.0000	Time Increment [min] 15.000
	0	0	0.0000	13.000
Surface H	lydraulics			
ear	Month	Day	Hour [hr]	Time Increment [min]
tal	0	0	0.0000	Time Increment [min] 15.000
	Ū	•	0.0000	
Resta	rt File			
Save Restart:	False			
		Resources & Lookup Table	es a la companya de la compa	
		_		
	urces			Tables
Rainfall Folder:			Boundary Stage Set: Extern Hydrograph Set:	
Unit Hydrograph			Curve Number Set:	1
Folder:			Guive Number Set.	I
			Green-Ampt Set:	
			Vertical Layers Set:	
			Impervious Set:	1
		Tolerances & Options		
Time Marching:	SAOR		IA Recovery Time:	24.0000 hr
Max Iterations:	6		in Receivery finne.	21.0000 11
Over-Relax Weight	0.5 dec			
Fact:				
dZ Tolerance:	0.0010 ft		Manual Basin Rain Opt:	Global
Max dZ:	1.0000 ft			
Link Optimizer Tol:	0.0001 ft		Rainfall Name:	~FDOT-1
			Rainfall Amount:	
Edge Length Option:	Automatic		Storm Duration:	1.0000 hr
			Dflt Damping (1D):	0.0050 ft
			Min Node Srf Area	100 ft2
			(1D):	
			Energy Switch (1D):	Energy

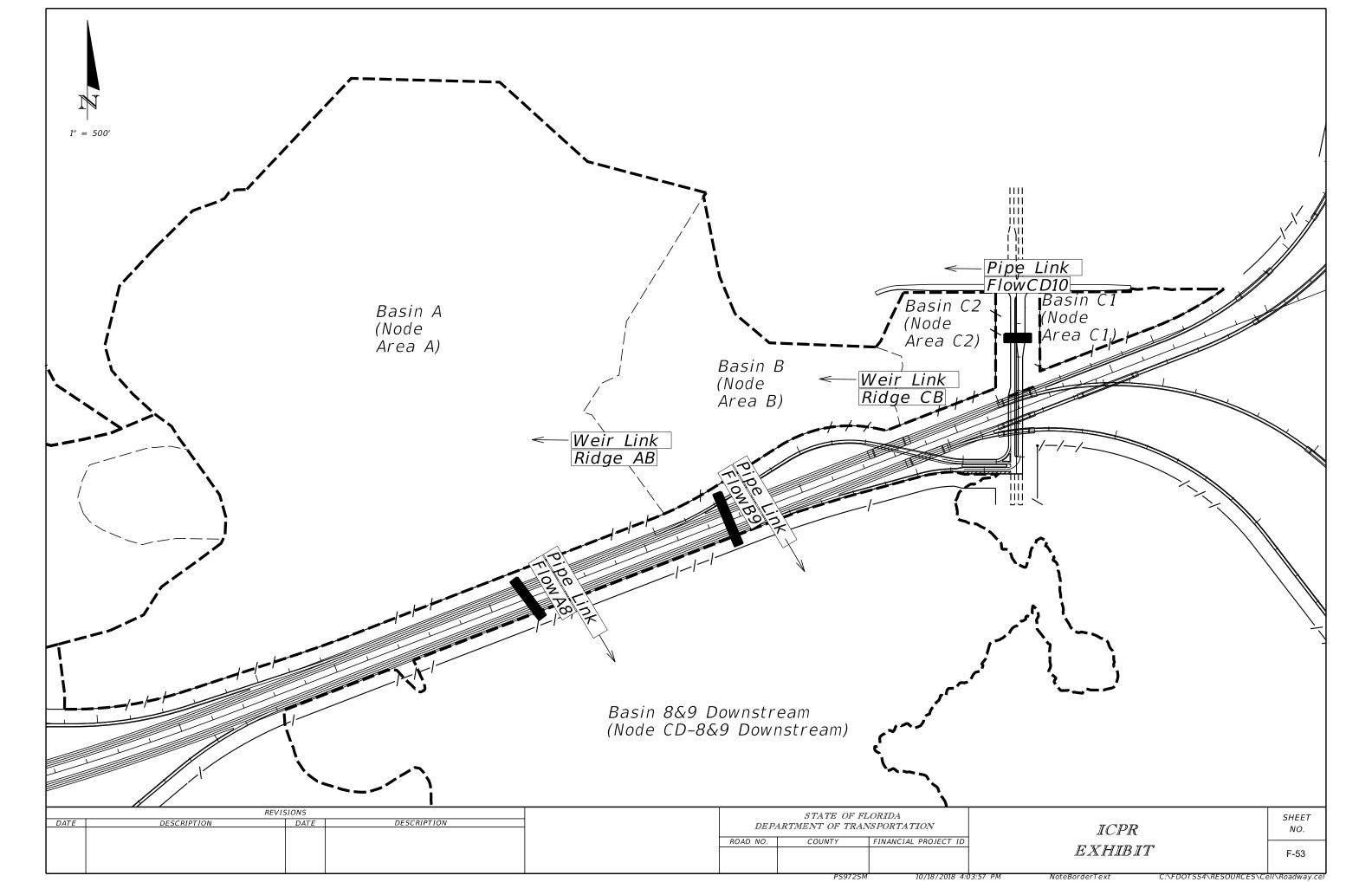
 $\label{eq:linear} J:\label{eq:linear} J:\lab$

Cross Drain 6 Rainfall Amount used for ICPR

Cross Drains 6, 6A, 6B and 6C Link Max

Link Min/Max Conditions [Scenario1]

Link Name	Sim Name	Max Flow [cfs]	Min Flow [cfs]	Min/Max Delta Flow	Max Us Velocity	Max Ds Velocity	Max Avg Velocity
				[cfs]	[fps]	[fps]	[fps]
CD-6	100yr	<mark>113.99</mark>	-3.30	-1.24	11.85	12.16	12.00
CD-6A	100yr	<mark>5.92</mark>	-12.08	0.27	-3.84	-5.77	-4.74
CD-6B	100yr	<mark>14.32</mark>	0.00	0.01	3.65	4.74	3.97
CD-6C	100yr	<mark>24.82</mark>	0.00	-0.01	7.90	8.12	8.01
Equalizer Pipe	100yr	4.94	-14.74	0.39	-3.42	-5.23	-4.26
Ridge EF	100yr	71.81	0.00	0.07	1.21	1.21	1.21
CD-6	10yr	<mark>.89.75</mark>	-2.31	-5.53	9.33	10.13	9.45
CD-6A	10yr	<mark>0.62</mark>	-4.62	0.01	-2.26	-4.25	-3.26
CD-6B	10yr	<mark>6.19</mark>	0.00	0.01	2.85	4.00	3.34
CD-6C	10yr	<mark>16.75</mark>	0.00	-0.01	5.33	6.44	5.89
Equalizer Pipe	10yr	1.65	-5.28	0.19	-2.18	-4.20	-3.19
Ridge EF	10yr	43.30	0.00	0.06	1.03	1.03	1.03
CD-6	25yr	<mark>.99.48</mark>	-2.75	-1.39	10.34	10.61	10.48
CD-6A	25yr	<mark>2.14</mark>	-7.34	0.06	-2.80	-4.91	-3.85
CD-6B	25yr	<mark>9.53</mark>	0.00	-0.01	3.22	4.14	3.45
CD-6C	25yr	<mark>20.08</mark>	0.00	-0.01	6.39	6.97	6.67
Equalizer Pipe	25yr	3.00	-8.59	0.32	-2.69	-4.78	-3.71
Ridge EF	25yr	53.92	0.00	0.06	1.10	1.10	1.10
CD-6	50yr	<mark>107.05</mark>	-3.02	-1.26	11.13	11.42	11.27
CD-6A	50yr	<mark>3.90</mark>	-9.73	0.15	-3.24	-5.40	-4.32
CD-6B	50yr	<mark>12.60</mark>	0.00	0.01	3.50	4.36	3.65
CD-6C	50yr	<mark>22.72</mark>	0.00	-0.01	7.23	7.55	7.39
Equalizer Pipe	50yr	4.10	-11.58	0.44	-3.06	-5.10	-4.01
Ridge EF	50yr	62.95	0.00	0.06	1.16	1.16	1.16


J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 6\

Cross Drains 6, 6A, 6B and 6C Node Max

Node Max Conditions [Scenario1]

Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta Stage [ft]	Max Total Inflow [cfs]	Max Total Outflow [cfs]	Max Surface Area [ft2]
Area E	100yr	132.00	126.19	0.0008	75.27	71.81	75186
Area F	100yr	133.00	110.92	0.0010	345.38	113.99	102081
CD-6 downstream	100yr	107.40	106.61	0.0010	333.15	5.92	645944
Downstream Floodplain	100yr	105.00	103.22	0.0001	24.82	0.00	6027009
Pond 3A1	100yr	109.88	<mark>107.01</mark>	0.0010	250.85	39.97	237170
Pond 3A2	100yr	108.00	<mark>106.82</mark>	0.0010	131.10	24.82	139498
Pond 4C2	100yr	115.00	106.99	0.0010	67.74	4.94	80730
Area E	10yr	132.00	126.13	0.0008	50.12	43.30	72492
Area F	10yr	133.00	108.80	0.0010	221.07	89.75	78985
CD-6 downstream	10yr	107.40	105.53	0.0010	240.80	2.31	504100
Downstream Floodplain	10yr	105.00	103.10	0.0000	16.75	0.00	5609070
Pond 3A1	10yr	109.88	<mark>106.14</mark>	0.0010	167.60	16.09	227203
Pond 3A2	10yr	108.00	<mark>105.47</mark>	0.0010	88.34	16.75	128475
Pond 4C2	10yr	115.00	105.98	0.0010	45.95	1.65	74156
Area E	25yr	132.00	126.16	0.0008	59.18	53.92	73550
Area F	25yr	133.00	109.59	0.0010	267.09	99.48	88827
CD-6 downstream	25yr	107.40	105.94	0.0010	275.16	2.75	562954
Downstream Floodplain	25yr	105.00	103.14	0.0001	20.08	0.00	5748358
Pond 3A1	25yr	109.88	<mark>106.45</mark>	0.0010	197.25	25.43	230905
Pond 3A2	25yr	108.00	<mark>105.97</mark>	0.0010	103.71	20.08	132573
Pond 4C2	25yr	115.00	106.36	0.0010	53.82	3.00	76622
Area E	50yr	132.00	126.17	0.0008	67.19	62.95	74395
Area F	50yr	133.00	110.26	0.0010	306.43	107.05	96046
CD-6 downstream	50yr	107.40	106.28	0.0010	304.43	3.90	605526
Downstream Floodplain	50yr	105.00	103.18	0.0001	22.72	0.00	5887262
Pond 3A1	50yr	109.88	<mark>106.72</mark>	0.0010	223.80	33.72	233952
Pond 3A2	50yr	108.00	<mark>106.42</mark>	0.0010	117.34	22.72	136294
Pond 4C2	50yr	115.00	106.67	0.0010	60.76	4.10	78625

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drain 6\

Cross Drain 8, 9, and 10 Input Report

Manual Basin: Basin 8&9 Downstream			
Scenario:	Scenario1		
Node:	CD-8&9 Downstream		
Hydrograph Method:	NRCS Unit Hydrograph		
Infiltration Method:	Curve Number		
Time of Concentration:	73.5000 min		
Max Allowable Q:	0.00 cfs		
Time Shift:	0.0000 hr		
Unit Hydrograph:	UH256		
Peaking Factor:	256.0		
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name
195.7500 A		А	
· · · ·		-	

Comment:

Manual Basin: Basin A			
Scenario:	Scenario1		
Node:	Area A		
Hydrograph Method:	NRCS Unit Hydrograph		
Infiltration Method:	Curve Number		
Time of Concentration:	53.0000 min		
Max Allowable Q:	0.00 cfs		
Time Shift:	0.0000 hr		
Unit Hydrograph:	UH256		
Peaking Factor:	256.0		
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name
198.0900 A		А	

Comment:

Manual Basin: Basin B			
Scenario:	Scenario1		
Node:	Area B		
Hydrograph Method:	NRCS Unit Hydrograph		
Infiltration Method:	Curve Number		
Time of Concentration:	30.4000 min		
Max Allowable Q:	0.00 cfs		
Time Shift:	0.0000 hr		
Unit Hydrograph:	UH256		
Peaking Factor:	256.0		
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name
33.7700 B		В	

Comment:

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drains 8910\

Cross Drain 8, 9, and 10 Input Report

Manual Basin: Basin C1			
Scenario:	Scenario1		
Node:	Area C1		
Hydrograph Method:	NRCS Unit Hydrograph		
Infiltration Method:	Curve Number		
Time of Concentration:	37.4000 min		
Max Allowable Q:	0.00 cfs		
Time Shift:	0.0000 hr		
Unit Hydrograph:	UH256		
Peaking Factor:	256.0		
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name
6.0800 C		С	

Comment:

Manual Basin: Basin C2			
Scenario:	Scenario1		
Node:	Area C2		
Hydrograph Method:	NRCS Unit Hydrograph		
Infiltration Method:	Curve Number		
Time of Concentration:	17.8000 min		
Max Allowable Q:	0.00 cfs		
Time Shift:	0.0000 hr		
Unit Hydrograph:	UH256		
Peaking Factor:	256.0		
Area [ac] Land Cover	Zone	Soil Zone	Rainfall Name
8.9600 C		С	
•		-	

Comment:

Node: Area A

Sce	enario:	Scenario1
	Type:	Stage/Area
Base	Flow:	0.00 cfs
Initial	Stage:	102.00 ft
Warning	Stage:	132.00 ft

Stage [ft]	Area [ac]	Area [ft2]
102.00	61.7500	2689830
103.00	72.5200	3158971
104.00	76.8100	3345844
105.00	80.6600	3513550
106.00	85.1600	3709570
107.00	93.1600	4058050
108.00	100.1600	4362970

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drains 8910\

Cross Drain 8, 9, and 10 Input Report

Stage [ft]	Area [ac]	Area [ft2]
109.00		
	106.6600	4646110
110.00	114.1600	4972810
111.00	118.1600	5147050
112.00	123.0100	5358316
113.00	127.5100	5554336
114.00	130.5100	5685016
115.00	133.5100	5815696
116.00	136.5800	5949425
117.00	139.6400	6082718
118.00	142.7400	6217754
119.00	145.7600	6349306
120.00	149.2600	6501766
121.00	152.7600	6654226
122.00	156.0600	6797974
123.00	160.3600	6985282
124.00	164.9600	7185658
125.00	169.6600	7390390
126.00	174.4600	7599478
127.00	179.3600	7812922
128.00	184.1400	8021138
129.00	189.2000	8241552
130.00	194.0200	8451511
131.00	197.3100	8594824
132.00	198.0900	8628800

Comment:

Node: Area B

Scenario:	Scenario1
Type:	Stage/Area
Base Flow:	0.00 cfs
Initial Stage:	104.00 ft
Warning Stage:	114.00 ft

Stage [ft]	Area [ac]	Area [ft2]
104.00	13.0700	569329
105.00	15.1000	657756
106.00	16.7200	728323
107.00	18.9100	823720
108.00	21.1500	921294
109.00	23.0900	1005800
110.00	29.0900	1267160
111.00	30.9800	1349489
112.00	33.2300	1447499
113.00	33.7100	1468408
114.00	33.7700	1471021

Node: Area C

Scenario:	Scenario1
Type:	Stage/Area
Base Flow:	0.00 cfs
Initial Stage:	119.00 ft
Warning Stage:	143.00 ft

Stage [ft]	Area [ac]	Area [ft2]
119.00	0.2700	11761
120.00	1.0500	45738
121.00	1.5700	68389
122.00	2.2900	99752
123.00	3.2300	140699
124.00	3.8700	168577
125.00	4.1700	181645
126.00	4.5800	199505
127.00	4.7700	207781
128.00	4.9900	217364
129.00	5.1400	223898
130.00	5.2700	229561
131.00	5.4000	235224
132.00	5.5100	240016
133.00	5.6100	244372
134.00	5.7300	249599
135.00	5.8100	253084
136.00	5.8700	255697
137.00	5.9200	257875
138.00	5.9700	260053
139.00	6.0000	261360
140.00	6.0200	262231
141.00	6.0400	263102
142.00	6.0600	263974
143.00	6.0800	264845

Comment:

Node: Area C2

Scenario:Scenario1Type:Stage/AreaBase Flow:0.00 cfsInitial Stage:107.00 ftWarning Stage:119.00 ft

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drains 8910\

Stage [ft]	Area [ac]	Area [ft2]
107.00	0.0900	3920
108.00	0.7900	34412
109.00	1.9800	86249
110.00	4.2300	184259
111.00	5.6400	245678
112.00	7.2000	313632
113.00	7.5400	328442
114.00	7.9000	344124
115.00	8.2400	358934
116.00	8.4100	366340
117.00	8.6300	375923
118.00	8.8300	384635
119.00	8.9600	390298

Node: CD-8&9 Downstream

Stage [ft]	Area [ac]	Area [ft2]
102.00	72.4800	3157229
103.00	172.2300	7502339
104.00	175.1300	7628663
105.00	184.9500	8056422
106.00	195.7500	8526870

Comment:

Pipe Link: FlowA8		Upstream		Dow	nstream
Scenario:	Scenario1	Invert:	102.00 ft	Invert	: 101.50 ft
From Node:	Area A	Manning's N:	0.0120	Manning's N	: 0.0120
To Node:	CD-8&9	Geometry	: Circular	Geomet	ry: Circular
	Downstream	Max Depth:	1.50 ft	Max Depth	: 1.50 ft
Link Count:	1			Bottom Clip	
Flow Direction:	Both	Default:	0.00 ft	Default	: 0.00 ft
Damping:	0.0000 ft	Op Table:		Op Table	:
Length:	290.00 ft	Ref Node:		Ref Node	:
FHWA Code:	1	Manning's N:	0.0000	Manning's N	0.0000
Entr Loss Coef:	0.00			Top Clip	

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drains 8910\

Exit Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft
Bend Loss Coef:	0.00	Op Table:		Op Table:	
Bend Location:	0.00 ft	Ref Node:		Ref Node:	
Energy Switch:	Energy	Manning's N:	0.0000	Manning's N:	0.0000
Comment:					

Pipe Link: FlowB9		Upst	ream	Do	wnstream
Scenario:	Scenario1	Invert:	103.50 ft	Inve	rt: 103.00 ft
From Node:	Area B	Manning's N:	0.0120	Manning's	N: 0.0120
To Node:	CD-8&9	Geometry	: Circular	Geom	etry: Circular
	Downstream	Max Depth:	1.50 ft	Max Dept	h: 1.50 ft
Link Count:	1			Bottom Clip	
Flow Direction:	Both	Default:	0.00 ft	Defau	It: 0.00 ft
Damping:	0.0000 ft	Op Table:		Op Tab	e:
Length:	340.00 ft	Ref Node:		Ref Noc	e:
FHWA Code:	1	Manning's N:	0.0000	Manning's	N: 0.0000
Entr Loss Coef:	0.00			Top Clip	
Exit Loss Coef:	0.00	Default:	0.00 ft	Defau	It: 0.00 ft
Bend Loss Coef:	0.00	Op Table:		Op Tab	e:
Bend Location:	0.00 ft	Ref Node:		Ref Noc	e:
Energy Switch:	Energy	Manning's N:	0.0000	Manning's	N: 0.0000
Comment:					

Pipe Link: FlowCD10		Upst	ream	Down	istream
Scenario:	Scenario1	Invert:	114.50 ft	Invert:	113.50 ft
From Node:	Area C1	Manning's N:	0.0120	Manning's N:	0.0120
To Node:	Area C2	Geometry	y: Circular	Geometr	y: Circular
Link Count:	1	Max Depth:	2.00 ft	Max Depth:	2.00 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	165.00 ft	Op Table:		Op Table:	
FHWA Code:	1	Ref Node:		Ref Node:	
Entr Loss Coef:	0.00	Manning's N:	0.0000	Manning's N:	0.0000
Exit Loss Coef:	0.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table:	
Energy Switch:	Energy	Ref Node:		Ref Node:	
		Manning's N:	0.0000	Manning's N:	0.0000
Comment:					

Scenario: Scenario1

Bottom Clip

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drains 8910\

Cross Drain 8, 9, and 10 Input Report

From Node:	Area A		
To Node:	Area B	Default:	0.00 ft
Link Count:	1	Op Table:	
Flow Direction:	Both	Ref Node:	
Damping:	0.0000 ft	Тор	Clip
Weir Type:	Broad Crested Vertical	Default:	0.00 ft
Geometry Type:	Rectangular	Op Table:	
Invert:	105.00 ft	Ref Node:	
Control Elevation:	105.00 ft	Discharge	Coefficients
Max Depth:	30.00 ft	Weir Default:	2.800
Max Width:	738.00 ft	Weir Table:	
Fillet:	0.00 ft	Orifice Default:	0.600
		Orifice Table:	

Comment:

Weir Link: Ridge CB		
Scenario:	Scenario1	Bottom Clip
From Node:	Area C2	Default: 0.00 ft
To Node:	Area B	Op Table:
Link Count:	1	Ref Node:
Flow Direction:	Both	Top Clip
Damping:	0.0000 ft	Default: 0.00 ft
Weir Type:	Broad Crested Vertical	Op Table:
Geometry Type:	Rectangular	Ref Node:
Invert:	110.00 ft	Discharge Coefficients
Control Elevation:	110.00 ft	Weir Default: 2.800
Max Depth:	30.00 ft	Weir Table:
Max Width:	270.00 ft	Orifice Default: 0.600
Fillet:	0.00 ft	Orifice Table:
Comment:		

Scenario:	Scenario1			
Run Date/Time:	5/29/2019 9:14:49 AM			
Program Version:	ICPR4 4.03.02.00			
		General		
Run Mode:	Normal			
	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	10.0000
	Hydrology [sec]	Surface Hydraulics		
	\$ 05	[sec]		

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drains 8910\

Cross	Drain 8	8, 9,	and	10	Input	Report
-------	---------	-------	-----	----	-------	--------

Min Calculation Time: Max Calculation Time:	60.0000	0.1000 30.0000		
		Output Time Increments		
Hydr	ology	I		
Year O	Month 0	Day 0	Hour [hr] 0.0000	Time Increment [min] 15.0000
		0	0.0000	15.0000
Surface F	lydraulics			
Year 0	Month 0	Day O	Hour [hr] 0.0000	Time Increment [min] 15.0000
Resta	rt File			
Save Restart:		•		
		Resources & Lookup Table	ss	
Reso	urces	1	Lookup	Tables
Rainfall Folder:			Boundary Stage Set:	
			Extern Hydrograph Set:	
Unit Hydrograph Folder:			Curve Number Set:	1
			Green-Ampt Set:	
			Vertical Layers Set:	
			Impervious Set:	1
		Tolerances & Options		
Time Marching:	SAOR		IA Recovery Time:	24.0000 hr
Max Iterations:	6			
Over-Relax Weight	0.5 dec			
Fact:	0.0010 8		Manual Davis Data Oat	
dZ Tolerance: Max dZ:	0.0010 ft 1.0000 ft		Manual Basin Rain Opt:	Global
Link Optimizer Tol:			Rainfall Name:	~FDOT-1
Entre optimizer 101.	5.5001 11		Rainfall Amount:	6.40 in
Edge Length Option:	Automatic		Storm Duration:	1.0000 hr
			Dflt Damping (1D):	0.0050 ft
			Min Node Srf Area	100 ft2
			(1D):	
			Energy Switch (1D):	Energy
Comment:				

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drains 8910\

^{5/29/2019 09:17}

Simulation: 10yr Scenario: Run Date/Time: Program Version:	Scenario1 5/29/2019 9:14:51 AM ICPR4 4.03.02.00			
		General		
Run Mode:	Normal			
	Veen	Manth	Davi	Llevin [bu]
Start Time:	Year 0	Month 0	Day 0	Hour [hr] 0.0000
End Time:	0	0	0	10.0000
	ů.	Ŭ	Ŭ	1010000
	Hydrology [sec]	Surface Hydraulics [sec]		
Min Calculation Time:	60.0000	0.1000	-	
Max Calculation Time:		30.0000		
		Output Time Increments		
Hydr	ology	I		
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.0000	15.0000
Surface H	Hydraulics	I		
Veer	Month	Deu	Llour [lou]	Time a la anome and funin]
Year 0	0	Day 0	Hour [hr] 0.0000	Time Increment [min] 15.0000
0	0	0	0.0000	10.0000
Resta	ırt File			
Save Restart:	False			
		Resources & Lookup Table	c	
			5	
Reso	urces		Lookup	Tables
Rainfall Folder:		-	Boundary Stage Set:	
			Extern Hydrograph Set:	
Unit Hydrograph Folder:			Curve Number Set:	1
Folder.			Green-Ampt Set:	
			Vertical Layers Set:	
			Impervious Set:	1
		Tolerances & Options		
Time Marching:	SAOR		IA Recovery Time:	24.0000 hr
Max Iterations:	6			
Over-Relax Weight	0.5 dec			
Fact: dZ Tolerance:	0.0010 ft		Manual Basin Rain Opt:	Global
			manuai basin Kalin Opt:	Giubai

9

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drains 8910\

Max dZ:	1.0000 ft		
Link Optimizer Tol:	0.0001 ft	Rainfall Name:	~FDOT-1
		Rainfall Amount:	4.80 in
Edge Length Option:	Automatic	Storm Duration:	1.0000 hr
		Dflt Damping (1D):	0.0050 ft
		Min Node Srf Area	100 ft2
		(1D):	
		Energy Switch (1D):	Energy

Simulation: 25yr				
Scenario:	Scenario1			
Run Date/Time:	5/29/2019 9:14:53 AM			
Program Version:	ICPR4 4.03.02.00			
		General		
Run Mode:	Normal	General		
	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	10.0000
	Hydrology [sec]	Surface Hydraulics		
	Hydrology [sec]	[sec]		
Min Calculation Time:	60.0000	0.1000	-	
Max Calculation Time:	00.0000	30.0000		
		00.0000		
		Output Time Increments		
Lludr	ology			
Tiyu	ology			
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.000	15.0000
		-		
Surface F	Hydraulics			
Year	Month	Day	Hour [hr]	Time Increment [min]
0	0	0	0.000	
	-	_	-	
	rt File			
Save Restart:	False			
		Resources & Lookup Table		
Reso	urces		Lool	kup Tables

J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drains 8910\

Rainfall Folder:

Unit Hydrograph Folder:

Boundary Stage Set: Extern Hydrograph Set: Curve Number Set: 1 Green-Ampt Set:

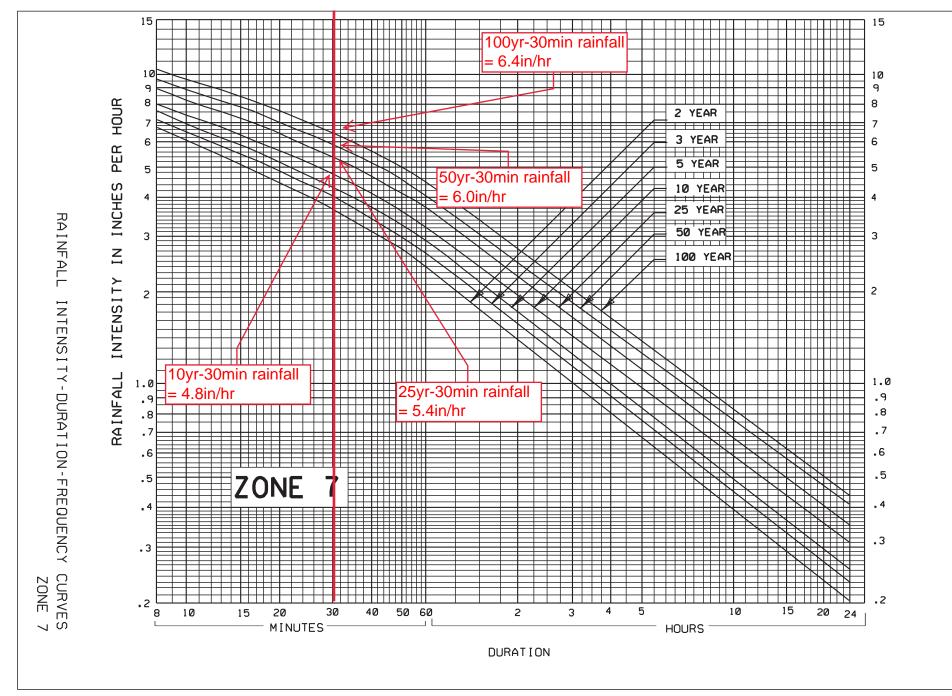
Vertical Layers Set: Impervious Set: 1

olerances & Options

Time Marching:	SAOR
Max Iterations:	6
Over-Relax Weight	0.5 dec
Fact:	
dZ Tolerance:	0.0010 ft
Max dZ:	1.0000 ft
Link Optimizer Tol:	0.0001 ft
Edge Length Option:	Automatic

Manual Basin Rain Opt: Global Rainfall Name: ~FDOT-1 Rainfall Amount: 5.40 in Storm Duration: 1.0000 hr Dflt Damping (1D): 0.0050 ft Min Node Srf Area 100 ft2 (1D): Energy Switch (1D): Energy

IA Recovery Time: 24.0000 hr


Comment:

Simulation: 50yr				
Scenario:	Scenario1			
Run Date/Time:	5/29/2019 9:14:55 AM			
Program Version:	ICPR4 4.03.02.00			
		General		
Run Mode:	Normal			
	Year	Month	Day	Hour [hr]
Start Time:	0	0	0	0.0000
End Time:	0	0	0	10.0000
	Hydrology [sec]	Surface Hydraulics		
		[sec]		
Min Calculation Time:	60.0000	0.1000		
Max Calculation Time:		30.0000		
		Output Time Increments		
Ludr	alagy			
Hyar	ology			

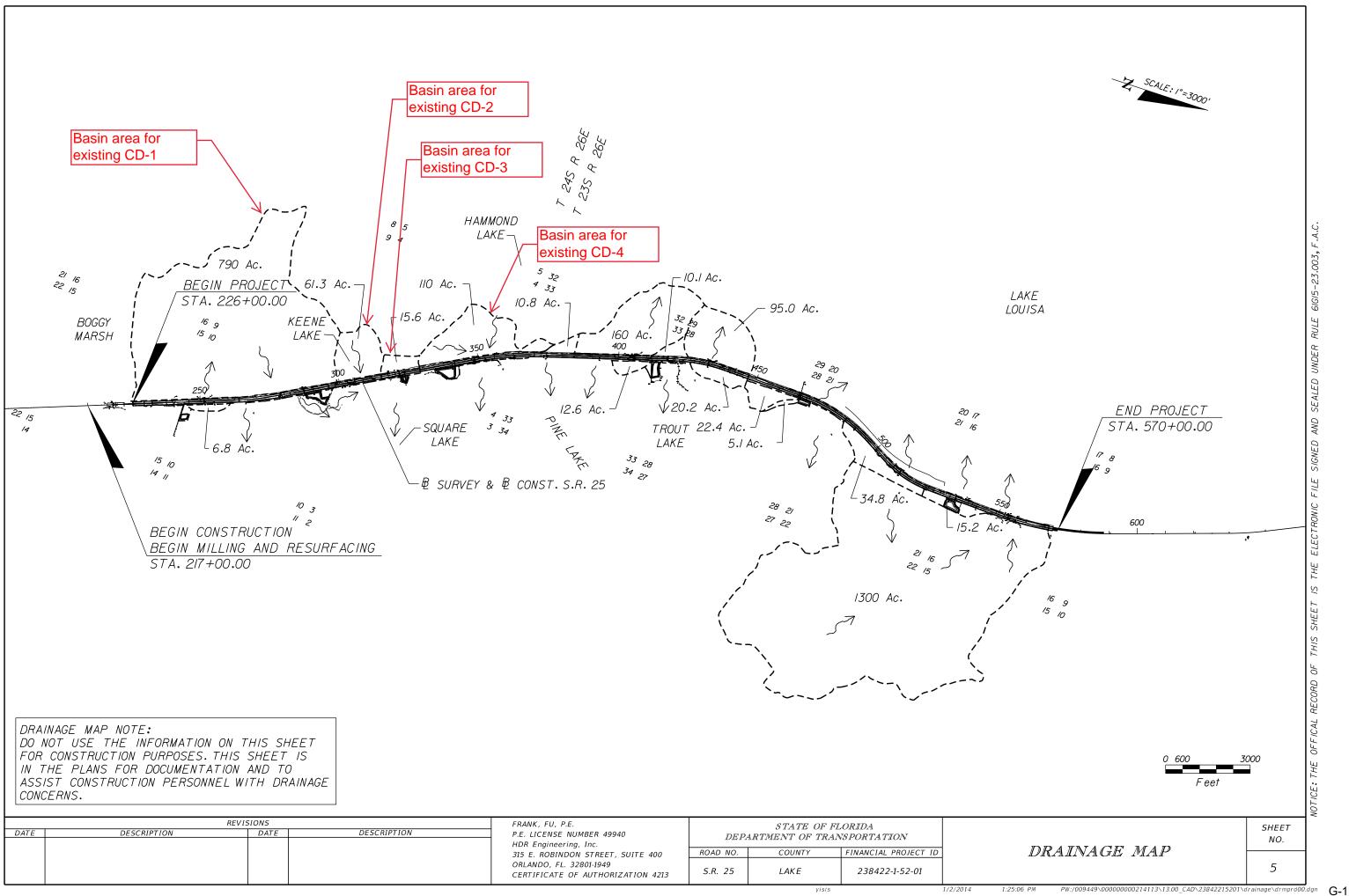
J:\Drainage\CFX - Lake-Orange Connector\Calculations\Cross Drains\Cross Drains 8910\

ear	Month 0	Day 0	Hour [hr] 0.0000	Time Increment [min] 15.000
	0	Ŭ	0.0000	10.000
Surface H	lydraulics			
ear	Month	Day	Hour [hr]	Time Increment [min]
	0	0	0.0000	15.000
Resta	rt File			
Save Restart:		_		
		Resources & Lookup Tab	bles	
	urces			Tables
Rainfall Folder:			Boundary Stage Set:	
			Extern Hydrograph Set:	
Unit Hydrograph Folder:			Curve Number Set:	1
			Green-Ampt Set:	
			Vertical Layers Set:	
			Impervious Set:	1
		Tolerances & Options		
Time Marching:	SAOR		IA Recovery Time:	24.0000 hr
Max Iterations:	6			
Over-Relax Weight Fact:	0.5 dec			
dZ Tolerance:	0.0010 ft		Manual Basin Rain Opt:	Global
Max dZ:	1.0000 ft		•	
Link Optimizer Tol:	0.0001 ft		Rainfall Name:	~FDOT-1
			Rainfall Amount:	6.00 in
Edge Length Option:	Automatic		Storm Duration:	1.0000 hr
			Dflt Damping (1D):	0.0050 ft
			Min Node Srf Area	100 ft2
			(1D):	
			Energy Switch (1D):	Energy

 $\label{eq:linear} J:\label{eq:linear} J:\lab$

Cross Drain 8, 9, and 10 Link Max

Link Min/Max Conditions [Scenario1]


Link Name	Sim Name	Max Flow [cfs]	Min Flow [cfs]	Min/Max Delta Flow [cfs]	Max Us Velocity [fps]	Max Ds Velocity [fps]	Max Avg Velocity [fps]
FlowA8	100yr	<mark>3.70</mark>	0.00	0.00	2.76	2.52	2.63
FlowB9	100yr	<mark>3.44</mark>	0.00	-0.01	2.59	4.18	3.38
FlowCD10	100yr	<mark>28.02</mark>	0.00	-0.18	8.92	9.16	9.04
Ridge AB	100yr	0.00	0.00	0.00	0.00	0.00	0.00
Ridge CB	100yr	0.00	0.00	0.00	0.00	0.00	0.00
FlowA8	10yr	<mark>1.97</mark>	0.00	0.00	2.29	1.60	1.94
FlowB9	10yr	<mark>2.30</mark>	0.00	0.00	2.29	3.72	3.01
FlowCD10	10yr	<mark>28.02</mark>	0.00	-0.18	8.92	9.16	9.04
Ridge AB	10yr	0.00	0.00	0.00	0.00	0.00	0.00
Ridge CB	10yr	0.00	0.00	0.00	0.00	0.00	0.00
FlowA8	25yr	<mark>2.59</mark>	0.00	0.00	2.47	1.95	2.21
FlowB9	25yr	<mark>2.71</mark>	0.00	0.00	2.41	3.87	3.14
FlowCD10	25yr	<mark>28.02</mark>	0.00	-0.18	8.92	9.16	9.04
Ridge AB	25yr	0.00	0.00	0.00	0.00	0.00	0.00
Ridge CB	25yr	0.00	0.00	0.00	0.00	0.00	0.00
FlowA8	50yr	<mark>3.25</mark>	0.00	0.00	2.65	2.29	2.47
FlowB9	50yr	<mark>3.15</mark>	0.00	0.01	2.52	4.05	3.29
FlowCD10	50yr	<mark>28.02</mark>	0.00	-0.18	8.92	9.16	9.04
Ridge AB	50yr	0.00	0.00	0.00	0.00	0.00	0.00
Ridge CB	50yr	0.00	0.00	0.00	0.00	0.00	0.00

Cross Drain 8, 9, and 10 Node Max

Node Max Conditions [Scenario1]

Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta	Max Total Inflow	Max Total Outflow	Max Surface Area
				Stage [ft]	[cfs]	[cfs]	[ft2]
Area A	100yr	132.00	103.06	0.0005	541.11	3.70	3171299
Area B	100yr	114.00	104.55	0.0010	96.11	3.44	618895
Area C1	100yr	143.00	119.00	0.0280	18.68	28.02	285
Area C2	100yr	119.00	109.94	0.0010	59.58	0.00	178413
CD-8&9	100yr	107.00	102.71	0.0004	404.32	0.00	6248605
Downstream							
Area A	10yr	132.00	102.73	0.0005	363.20	1.97	3034301
Area B	10yr	114.00	104.33	0.0010	57.61	2.30	598969
Area C1	10yr	143.00	119.00	0.0280	11.97	28.02	285
Area C2	10yr	119.00	109.46	0.0010	38.18	0.00	131584
CD-8&9	10yr	107.00	102.52	0.0004	270.89	0.00	5412400
Downstream							
Area A	25yr	132.00	102.86	0.0005	429.07	2.59	3092729
Area B	25yr	114.00	104.41	0.0010	71.55	2.71	606228
Area C1	25yr	143.00	119.00	0.0280	14.43	28.02	285
Area C2	25yr	119.00	109.65	0.0010	46.05	0.00	150451
CD-8&9	25yr	107.00	102.59	0.0004	320.30	0.00	5735215
Downstream							
Area A	50yr	132.00	102.98	0.0005	496.02	3.25	3150941
Area B	50yr	114.00	104.50	0.0010	86.10	3.15	613753
Area C1	50yr	143.00	119.00	0.0280	16.97	28.02	285
Area C2	50yr	119.00	109.83	0.0010	54.15	0.00	167663
CD-8&9	50yr	107.00	102.67	0.0004	370.49	0.00	6046961
Downstream							

Appendix G – Existing Permits

HDR

March 30, 2005

St. Johns River Water Management District ERP Permitting 975 Keller Road Altamonte Springs, FL 32714

Existing cross drain 1-4 information used for the HY-8 existing conditions analysis

RE: SR 25 (US 27) Widening From Boggy Marsh Road to 1000 ft North Lake Louisa Road Lake County ERP Permit Application – Individual Permit (Cross Drain Calculations)

To Whom It May Concern:

Please find enclosed the following information pertaining to the referenced project:

• Five (5) Signed And Sealed Cross Drain Calculations

The above calculations are to supplement the permit application package submitted on March 28, 2005.

Should you have any questions, please contact me at (407) 420-4215 or via email at Glen.Partlow@hdrinc.com.

Sincerely, HDR Engineering, Inc.

7/

Glen Partlow, PE Drainage Engineer

cc:

Todd Long, FDOT Amy Sirmans, FDOT Mike Hill, FDOT Andy Lauzier, HDR File

90260-2

RECEVED

MAR 3 8 2005

ALTANONTE SVC. CTR.

315 E Robinson Street Suite 400 Orlando, FL 32801-1949

Phone: (407) 420-4200 Fax: (407) 420-4242 www.hdrinc.com

HDR Engineering, Inc.

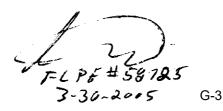
Drainage Design Documentation for

SR 25 (US 27) From Boggy Marsh Road to 1000 ft. North of Lake Louisa Road

SJRWMD Permit Submittal (Cross Drains)

Financial Project ID. 238422-1-32-02

90260-2


RECEIVED

MAR 3.0 2005 PDS ALTAMONTE SVC. CTR

Prepared by:

HDR Engineering, Inc 315 E. Robinson St., Suite 400 Orlando, FL 32801

March 2005

SECTION 15-CROSSDRAIN ANALYSIS

Crossdrain Analysis

CTION 15 CROSS DEAIN

SECTION 15 CROSS DRAINS

15.1 Pre Development Analysis:

Six cross drains were identified within the project limits. The cross drains are identified on the following table:

D .	Station	Size	Action
CD 1	287+13	(2) 10'x4' CBC	Extend
CD 2	305+50	4'x3' CBC	Extend
CD 3	321+48	2'x2' CBC + <u>30" RCP</u>	Replace
CD 4	348+48	5'x2' CBC	Extend
CD 5	511+72	4'x3' CBC	Extend
CD 6	553+53	(3) 6'x5' CBC	Extend

CD 3 and CD 5 originally were 2'x2' concrete box culverts that had been extended with 30" round RCP. The FDOT has requested that these cross drains be replaced with new cross drain pipes. All other cross drains, 30" and larger, will be extended if possible.

A hydrologic analysis was conducted to estimate the discharges for the design year frequency, the base flood and the greatest flood. A design frequency of 50 years was determined as the minimum for this roadway. The base flood and the greatest flood used frequencies of 100 years and 500 years, respectively.

Discharge rates for cross drains 48" and smaller were estimated using recommended design procedures found in the FDOT Cross Drain Handbook, dated August 1996. This design procedure is for culvert extensions and replacements in areas with no known historical problems. Using the methodologies suggested in the handbook the 25 year discharge (Q_{25}) was estimated taking the cross sectional area of the pipe and multiplying it by a velocity of 6 feet per second. The 50 year discharge, (Q_{50}) was estimated by multiplying Q_{25} by 1.25, the 100 year discharge, (Q_{100}) was estimated by

<u>HR</u>

SECTION 15-CROSS DRAINS

multiplying Q_{25} by 1.4 and the 500 year discharge (Q_{500}) was estimated by multiplying (Q_{100}) by 1.7.

The rational method (Q=CIA) was used to determine Q_{50} and Q_{100} for cross drains greater than 48" and less than 20' bridge. Please see the attached calculation to see applicable drainage areas, run-off coefficients, rainfall intensities and time of concentrations. Q_{500} was estimated by plotting Q_{50} and Q_{100} flow rates on log probability paper and projecting a line to the 500 year probability. The discharged determined using the rational method were compared to the discharges determined in the Location Hydraulics Report for SR 25 prepared by FDOT District 5, updated February 1999. The two methods produced comparable results and the discharges determined using the rational method were chosen for comparison since they were slightly higher.

After the flow rates were determined, a hydraulic analysis using FHWA Culvert Analysis HY-8, Version 6.1 was conducted. Using the design (Q_{50}) , base (Q_{100}) and greatest (Q_{500}) discharges the pre-developed conditions were modeled to determine the water surface elevation for each design event. The tailwater elevations used for the HY-8 analysis are consistent with the elevations found the SR 25 Design High Water Report prepared by HDR Engineering, dated December 2003.

15.2 Post Development Analysis

 \mathcal{O}

A hydraulic analysis using FHWA Culvert Analysis HY-8, Version 6.1 for the post-developed conditions was conducted using the same discharge rates and tailwater condition as the pre-developed condition. The pre-development and post-development water surface elevations for the 50 year storm and overtopping frequencies are summarized in the following table. The largest post-development water surface elevation stage increase was 0.15 ft and the road is not overtopped during the design event.

<u> HR</u>

A SECTION IS GROSS DRAINS AND I

D i	50 year	50 year 📖	Overt	opping .
	Pre Elevation (ft)	Post Elevation (ft)	Elevation (ft)	Frequency (year)
CD 1	112.59	112.59	115.60	>500
CD 2	112.71	112.76	155.29	229
CD 3	112.60	112.07	117.00	388
CD 4	107.75	107.90	110.37	213
CD 5	101.60	101.60	103.34	168
CD 6	98.34	9835	103.39	>500

15.3 Scour:

 $\overline{0}$

Only one existing crossdrain, CD 2, showed signs of scour during the project field review. A scour hole approximately 13.5" deep was observed on the downstream end of the crossdrain. Since the crossdrain is to be extend and that the scour hole is small and localized, it was determined that a blanket of rubble rip-rap would be sufficient on the downstream side of the proposed extension

<u>HR</u>

SR 25 (US 27) Lake County, FL

Designed by: GTP Checked by: CJL

Financial Project ID: 238422-1-52-01

Date : 10/13/2004

STRUCTURE	STATION	DESIGN	FLOOD	BASE FLOOD		OVERT	OPPING I	FLOO	D	GREATEST FLOOD			
No.		2 % Prob.	50 yr Freq.	1 % Prob.	100 yr Freq.			Prob.	Freq.			Prob.	Freq.
· · · · · · · · · · · · · · · · · · ·		Discharge	Stage	Discharge	Stage	Discharge	Stage	%	ут	Discharge	Stage	%	yr
S-213	287+13	285.8	112.59	344.1	113.00		· · · · · ·			470	117.07		500
S-235	305+50	90.0	112.76	100.8	113.38	132.4	115.29	0.44	229	470	113.83	0.2	500
S-307	321+35	36.8	111.19	41.2	112.07	64.5	117.00	0.26	388			-	
<u>S-419</u>	348+48	75.0	107.90	84.0	108.49	107.7	110.37	0.47	213			· · · · · ·	· ·
S-726	511+72	90.0	101.60	100.8	102.18	119.6	103.34	0.60	168			1	
S-765	553+53	273.4	98.35	314.7	98.58					420	99.17	0.2	500
												ļ	
												<u> </u>	
			·										<u> </u>
												·	
												1	
					·							L	

NOTE : The hydraulic data is shown for informational purposes only, to indicate the flood discharges and water surface elevations which may be anticipated in any given year. This data was generated using highly variable factors determined by a study of the watershed. Many judgements and assumptions assumptions are required to establish these factors. The resultant hydraulic data is sensitive to changes, particularly of antecedent conditions, urbanization, channelization, and land use. Users of this data are cautioned against the assumption of precision which can not be attained. Discharges are in cubic feet per second (cfs) and stages are in feet (ft), NAVD, 1988.

DEFINITIONS:

Design Flood : The flood selected by the FDOT to be utilized to assure a standard level of hydraulic performance. Base Flood : The flood having a 1 % chance of being exceeded in any year. (100 yr frequency) Overtopping Flood : The flood where flow occurs (A) over the highway, (B) over a watershed divide or (C) thru emergency relief structures. Greatest Flood : The most severe flood which can be predicted where overtopping is not practicable,

normally one with a 0.2 % chance of being exceeded in any year. (500 yr frequency)

Data adapted from : ___N/A

Prepared By : <u>Glen T. Partlow, P.E.</u> Date : <u>October 13, 2004</u>

Approved for use	
on this project By :	
Date :	

barr S-213 2 S-235 1 S-307 1 S-419 1 S-726 1	0. of Irrels 2 1 1 1 1 3	Dia. inch 10 x 4 4 x 3 30 5 x 2 4 x 3 6 x 5	Flow area sq ft 80.0 12.0 4.9 10.0	Q 25 N/A 72.0 29.5	Q 50 285.8 90.0	Q 100 344.1	Flow 698	Overto % Prob.	oping Freq yr	Q 500	Fl	i yr	25 уг	5 0 yr	100 yr	Overtop	500 y
S-213 2 S-235 1 S-307 1 S-419 1 S-726 1	2 1 1 1 1 1	10 x 4 4 x 3 30 5 x 2 4 x 3	sq ft 80.0 12.0 4.9 10.0	N/A 72.0	285.8	344.1	Flow				~ ~	-)-	,- ,	, <i></i> .	100 31	orenop	
S-235 1 S-307 1 S-419 1 S-726 1	1 1 1 1	4 x 3 30 5 x 2 4 x 3	12.0 4.9 10.0	72.0		<u> </u>	600	1								stage	_
S-235 1 S-307 1 S-419 1 S-726 1	1 1 1 1	4 x 3 30 5 x 2 4 x 3	12.0 4.9 10.0	72.0		<u> </u>		0.00	2026								
S-307 1 S-419 1 S-726 1	1 1 1	30 5 x 2 4 x 3	4.9 10.0		90.0	1 100 0		0.03	3856	470.0		-	-	112.59	113.00	115.60	113.8
S-419 1 S-726 1	1	5 x 2 4 x 3	10.0	29.5	760	100.8	132.4	0.44	229	171.4		-	-	112.76	113.38	115.29	-
S-726 1	1	4 x 3		60.0	36.8 75.0	41.2 84.0	64.5	0.26	388	70.1		-		111.19	112.07	117.00	-
			12.0	72.0	90.0	100.8	107.7 119.6	0.47	213	142.8			-	107.90	108.49	110.37	-
			90.0	N/A	273.4	314.7	979	0.00	168 55989	171.4 420.0		-	-	101.60	102.18	103.34	-
		-0 x 5			213.4	514.7	212	0.00	33909	420.0		-		98.35	98.58	103.18	99.17
			·		\			··· · · ·		····						· · · - ·	
							· · ·		···········				<u> </u>				
								·	······································			·		····-			
			-														
								·· · ·				-					
			Probalility :		2.0	1.0				0.2							
			log of prob. :	0.6021	0.301	0				-0.69897							
$Q_{25} = A V, V =$		ps				\											
$Q_{50} = Q_{25} * 1.25$	5			Was De	termined	from LO	DG(flov	v) vers I	LOG(prob.)	ratios		Was det	ermined f	rom stage	vers flov	v ratios	
$Q_{100} = Q_{25} * 1.4$									·• /					U			
$Q_{500} = Q_{100} * 1.7$	7																
				E.	9	1		_									
						ate in (
				P	re-de	velopr	nent										
				n	nodel	in ICP	R for										
						year s											
						1 to 60											

CURRENT DATE: 10-02-2004 CURRENT TIME: 12:46:00

FILE DATE: 10-02-2004 FILE NAME: 28713EX

				WA CULVERT HY-8, VERSI				
C U		SITE DA	TA		CULVERT	SHAPE,	MATERIAL,	INLET
L V NO. 1 2 3 4 5 6	INLET ELEV. (ft) 109.41	OUTLET ELEV. (ft) 109.20	CULVERT LENGTH (ft) 150.00	BARRELS SHAPE MATERIAL 2 RCB	SPAN (ft) 10.00	RISE (ft) 4.00	MANNING n .012	INLET TYPE CONVENTIONAL

SUMMARY OF	CULVERT	FLOWS (cf:	3)	FILE:	28713EX		DATE:	10-02-2004
ELEV (ft)	TOTAL	1	2	3	4	5	6	ROADWAY ITR
112.59 <i>5</i> 4	285.8	285.8	0.0	0.0	0.0	0.0	0.0	0.00 1
112.72	304.2	304.2	0.0	0.0	0.0	0.0	0.0	0.00 1
112.86	322.6	322.6	0.0	0.0	0.0	0.0	0.0	0.00 1
112.99	341.1	341.1	0.0	0.0	0.0	0.0	0.0	0.00 1
113.01 <i>/u</i>	04R344.1	344.1	0.0	0.0	0.0	0.0	0.0	0.00 1
113.24	377.9	377.9	0.0	0.0	0.0	0.0	0.0	0.00 1
113.36	396.3	396.3	0.0	0.0	0.0	0.0	0.0	0.00 1
113.48	414.7	414.7	0.0	0.0	0.0	0.0	0.0	0.00 1
113.60	433.2	433.2	0.0	0.0	0.0	0.0	0.0	0.00 1
113.72	451.6	451.6	0.0	0.0	0.0	0.0	0.0	0.00 1
113.84 <i>50</i>	•1R470.0	470.0	0.0	0.0	0.0	0.0	0.0	0.00 1
115.60	698.2	698.2	0.0	0.0	0.0	0.0		VERTOPPING

SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: 28713EX DATE: 10-02-2004

113.24 113.36	0.000 0.000	377.90 396.32	0.00 0.00	0.00 0.00
113.24	0.000	377.90		
113.01	0.000	341.00	0.00	0.00 0.00
112.86 112.99	0.000 0.000	322.64 341.06	0.00 0.00	0.00
112.72	0.000	304.22	0.00	0.00
ELEV (ft) 112.59	ERROR (ft) 0.000	FLOW (cfs) 285.80	ERROR (cfs) 0.00	ERROR 0.00

URRENT DA TRRENT TI									: 10-02- : 28713B	
PERF	ORMANCE	CURVE F	OR CULV	ERT 1	- 2(10	.00 (ft	:) BY	4.00 (:	Et)) RCE	3
DIS- CHARGE FLOW (cfs)	ELEV.	DEPTH	OUTLET CONTROL DEPTH (ft)	TYPE			OUTLET DEPTH (ft)			TW VEL. (fps)
285.80 304.22 322.64 341.06 344.10 377.90 396.32 414.74 433.16 451.58 470.00	112.59 112.72 112.86 112.99 113.01 113.24 113.36 113.48 113.60 113.72 113.84	3.26 3.39 3.52 3.54 3.77 3.90 4.03 4.15 4.28	3.31 3.45 3.58 3.60 3.83 3.95 4.07 4.19 4.31	3-M2t 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c	2.28 2.38 2.48 2.58 2.59 2.77 2.86 2.95 3.05 3.14 3.23	1.85 1.93 2.01 2.09 2.10 2.23 2.31 2.38 2.45 2.52 2.58	1.86 1.93 2.01 2.09 2.10 2.23 2.31 2.38 2.45 2.52 2.58	1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	7.87 8.02 8.17 8.20 8.46 8.59 8.72 8.85 8.97	
	. inlet . inlet				41 ft 00 ft		ltlet in let cre		109.20 0.00	
INLE OUTL OUTL NUMB SLOP	DATA ** T STATIC T ELEVAT ET STATI ET ELEVA ER OF BA E (V/H) ERT LENC	ON TION TON ATION ARRELS				****** 0.00 109.41 150.00 109.20 2 0.001 150.00	ft ft ft			
BARR BARR BARR BARR INLE INLE	ERT DATA EL SHAPH EL SPAN EL RISE EL MATEH EL MANNI T TYPE T EDGE A T DEPRES	E RIAL ING'S n AND WALL	BOX 10.0 4.0 CONCR 0.012 CONVE	0 ft 0 ft	L	***** 5 DEG.)				

2

URRENT DATE: 10-02-2004

FILE DATE: 10-02-2004 FILE NAME: 28713EX

TAILWATER

CONSTANT WATER SURFACE ELEVATION 111.06

ROADWAY OVERTOPPING DATA _____

ROADWAY SURFACE	PAVED
EMBANKMENT TOP WIDTH	92.00 ft
CREST LENGTH	200.00 ft
OVERTOPPING CREST ELEVATION	115.60 ft

CURRENT DATE: 10-02-2004 'URRENT TIME: 12:47:21

FILE DATE: 10-02-2004 FILE NAME: 28713PR

				WA CULVERT HY-8, VERSI				
CU		SITE DA	.TA		CULVERT	SHAPE,	MATERIAL,	INLET
L V NO. 2 3 4 5 6	INLET ELEV. (ft) 109.40	OUTLET ELEV. (ft) 109.20	CULVERT LENGTH (ft) 170.00	BARRELS SHAPE MATERIAL 2 RCB	SPAN (ft) 10.00	RISE (ft) 4.00	MANNING n .012	INLET TYPE CONVENTIONAL

UMMARY OF CULVERT	FLOWS (cfs))	FILE:	28713PR		DATE:	10-02-2004
ELEV (ft) TOTAL		2	3	4	5	6]	ROADWAY ITR
112.59 <i>504</i> 8285.8	285.8	0.0	0.0	0.0	0.0	0.0	0.00 1
112.72 304.2	304.2	0.0	0.0	0.0	0.0	0.0	0.00 1
112.85 322.6	322.6	0.0	0.0	0.0	0.0	0.0	0.00 1
112.98 341.1	341.1	0.0	0.0	0.0	0.0	0.0	0.00 1
113.00 <i>1004</i> R 344.1	344.1	0.0	0.0	0.0	0.0	0.0	0.00 1
113.23 377.9	377.9	0.0	0.0	0.0	0.0	0.0	0.00 1
113.36 396.3	396.3	0.0	0.0	0.0	0.0	0.0	0.00 1
113.48 414.7	414.7	0.0	0.0	0.0	0.0	0.0	0.00 1
113.60 433.2	433.2	0.0	0.0	0.0	0.0	0.0	0.00 1
113.72 451.6	451.6	0.0	0.0	0.0	0.0	0.0	0.00 1
113.83 500YR 470.0	470.0	0.0	0.0	0.0	0.0	0.0	0.00 1
116.50 795.7	795.7	0.0	0.0	0.0	0.0		VERTOPPING

SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: 28713PR DATE: 10-02-2004

HEAD	HEAD	TOTAL	FLOW	% FLOW
ELEV (ft	i) ERROR (ft)	FLOW (cfs)	ERROR (cfs)	ERROR
112.59	0.000	285.80	0.00	0.00
112.72	0.000	304.22	0.00	0.00
112.85	0.000	322.64	0.00	0.00
112.98	0.000	341.06	0.00	0.00
113.00	0.000	344.10	0.00	0.00
113.23	0.000	377.90	0.00	0.00
113.36	0.000	396.32	0.00	0.00
113.48	0.000	414.74	0.00	0.00
113.60	0.000	433.16	0.00	0.00
113.72	0.000	451.58	0.00	0.00
113.83	0.000	470.00	0.00	0.00

	'URRENT DATE: 10-02-2004 FILE DATE: 10-02-2004 ''RRENT TIME: 12:47:21 FILE NAME: 28713PR										
	PERFO	RMANCE	CURVE F	OR CUL	VERT 1	- 2(10	0.00 (fi	t) BY	4.00 (1	ft)) RCE	
DIS CHAR FLC (cfs	RGE W	ELEV.	INLET CONTROL DEPTH (ft)	DEPTH	TYPE	NORMAL DEPTH (ft)	CRIT. DEPTH (ft)	OUTLET DEPTH (ft)	TW DEPTH (ft)	OUTLET VEL. (fps)	TW VEL. (fps)
285. 304. 322. 341. 344. 377. 396. 414. 433. 451. 470.	22 64 06 10 90 32 74 16 58 00	112.59 112.72 112.85 112.98 113.00 113.23 113.36 113.48 113.60 113.72 113.83	3.26 3.39 3.52 3.54 3.77 3.90 4.03 4.15 4.28 4.41	3.32 3.45 3.58 3.60 3.83 3.96 4.08 4.20 4.32 4.43	3-M2t 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c	2.41 2.51 2.61 2.72 2.74 2.92 3.02 3.12 3.22 3.31 3.41	1.85 1.93 2.01 2.09 2.10 2.23 2.31 2.38 2.45 2.52 2.52 2.58	1.86 1.93 2.01 2.09 2.10 2.23 2.31 2.38 2.45 2.52 2.58	1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	7.68 7.87 8.02 8.17 8.20 8.46 8.59 8.72 8.85 8.97 9.09	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
			face in throat			40 ft 00 ft		utlet in ilet cre		109.20 0.00	
	***** SITE DATA ***** CULVERT INVERT ************************************										
	BARREI BARREI BARREI BARREI INLET INLET	L SHAPE L SPAN L RISE L MATER L MANNI TYPE	IAL NG'S n ND WALL	BOX 10.0 4.0 CONCR 0.012 CONVE	0 ft 0 ft ETE NTIONA	L					

URRENT DATE: 10-02-2004

FILE DATE: 10-02-2004 FILE NAME: 28713PR

TAILWATER

CONSTANT WATER SURFACE ELEVATION 111.06

------ ROADWAY OVERTOPPING DATA ------

ROADWAY SURFACEEMBANKMENT TOP WIDTHCREST LENGTHOVERTOPPING CREST ELEVATION1

PAVED 114.00 ft 200.00 ft 116.50 ft

CURRENT DATE: 09-08-2004 CURRENT TIME: 10:43:08

FILE DATE: 09-08-2004 FILE NAME: 30550EX

				NA CULVERT HY-8, VERSI				
C U		SITE DA	TA		CULVERT	SHAPE,	MATERIAL,	INLET
L V NO. 1 2 3 4 5 6	INLET ELEV. (ft) 107.93	OUTLET ELEV. (ft) 107.85	CULVERT LENGTH (ft) 150.00	BARRELS SHAPE MATERIAL 1 RCB	SPAN (ft) 4.00	RISE (ft) 3.00	MANNING n .012	INLET TYPE CONVENTIONAL

CUMMARY OF	CULVERT	FLOWS (cfs	3)	FILE:	30550EX		DATE	: 09-08-2004
ELEV (ft)	TOTAL	1	2	3	4	5	6	ROADWAY ITR
112.71 504	况 90.0	90.0	0.0	0.0	0.0	0.0	0.0	0.00 1
113.14	98.1	98.1	0.0	0.0	0.0	0.0	0.0	0.00 1
113.30 <i>100</i>	YR 100.8	100.8	0.0	0.0	0.0	0.0	0.0	0.00 1
114.05	114.4	114.4	0.0	0.0	0.0	0.0	0.0	0.00 1
114.33	122.6	119.1	0.0	0.0	0.0	0.0	0.0	2.31 26
114.37	130.7	119.8	0.0	0.0	0.0	0.0	0.0	10.02 7
114.40	138.8	120.3	0.0	0.0	0.0	0.0	0.0	17.33 5
114.42	147.0	120.8	0.0	0.0	0.0	0.0	0.0	25.28 5
114.45	155.1	121.2	0.0	0.0	0.0	0.0	0.0	32.62 4
114.47	. 163.3	121.6	0.0	0.0	0.0	0.0	0.0	40.46 4
114.49 500	^{YR} 171.4	121.9	0.0	0.0	0.0	0.0	0.0	48.41 4
114.30	118.7	118.7	0.0	0.0	0.0	0.0	0.0 (OVERTOPPING

SUMMARY	OF	ITERATIVE	SOLUTION	ERRORS

FILE: 30550EX

DATE: 09-08-2004

HEAD	HEAD	TOTAL	FLOW	% FLOW			
ELEV (ft)	ERROR (ft)	FLOW (cfs)	ERROR (cfs)	ERROR			
112.71	0.000	90.00	0.00	0.00			
113.14	0.000	98.14	0.00	0.00			
113.30	0.000	100.80	0.00	0.00			
114.05	0.000	114.42	0.00	0.00			
114.33	-0.003	122.56	1.15	0.94			
114.37	-0.002	130.70	0.86	0.66			
114.40	-0.003	138.84	1.20	0.86			
114.42	-0.002	146.98	0.91	0.62			
114.45	-0.004	155.12	1.33	0.86			
114.47	-0.004	163.26	1.25	0.77			
114.49	-0.003	171.40	1.07	0.62			
<pre><1> TOLERANCE (ft) = 0.010 <2> TOLERANCE (%) = 1.000</pre>							

URRENT	DATE:	09-08-2004
RRENT	TIME:	10:43:08

DIS- CHARGE FLOW (cfs)	HEAD- INLET WATER CONTROL ELEV. DEPTH (ft) (ft)	OUTLET CONTROL FLOW DEPTH TYPE (ft) <f4></f4>	DEPTH		OUTLET DEPTH (ft)	TW DEPTH (ft)	OUTLET VEL. (fps)	TW VEL. (fps)
90.00 98.14 100.80 114.42 119.10 119.82 120.32 120.78 121.17 121.55 121.92	112.714.60113.145.03113.305.18114.056.00114.326.31114.366.36114.396.39114.426.42114.446.45114.476.47114.496.50	4.78 2-M2c 5.21 2-M2c 5.37 2-M2c 6.12 2-M2c 6.39 6-FFc 6.43 6-FFc 6.46 6-FFc 6.49 6-FFc 6.51 6-FFc 6.51 6-FFc 6.54 6-FFc 6.56 6-FFc	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	2.51 2.66 2.71 2.95 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0	2.51 2.66 2.71 2.95 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0	1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97	9.22 9.31 9.71 9.93 9.98 10.03 10.07 10.10 10.13	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
El. inlet face invert 107.93 ft El. outlet invert 107.85 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft ***** SITE DATA ***** CULVERT INVERT ************************************								
BARF BARF BARF BARF BARF INLE INLE	VERT DATA SUMMAR REL SHAPE REL SPAN REL RISE REL MATERIAL REL MANNING'S n CT TYPE CT EDGE AND WALI CT DEPRESSION	BOX 4.00 ft 3.00 ft CONCRETE 0.012 CONVENTION	AL					

PERFORMANCE CURVE FOR CULVERT 1 - 1(4.00 (ft) BY 3.00 (ft)) RCB

'URRENT DATE: 09-08-2004 "RRENT TIME: 10:43:08

FILE DATE: 09-08-2004 FILE NAME: 30550EX

TAILWATER

CONSTANT WATER SURFACE ELEVATION 109.82

ROADWAY SURFACE EMBANKMENT TOP WIDTH CREST LENGTH OVERTOPPING CREST ELEVATION

PAVED 92.00 ft 200.00 ft 114.30 ft

CURRENT DATE: 09-08-2004 URRENT TIME: 10:44:10

FILE DATE: 09-08-2004 FILE NAME: 30550PR

·				WA CULVERT HY-8, VERSI				
C		SITE DA	TA		CULVERT	SHAPE,	MATERIAL,	INLET
U L NO. 1 2 3 4 5 6	INLET ELEV. (ft) 108.00	OUTLET ELEV. (ft) 107.85	CULVERT LENGTH (ft) 165.00	BARRELS SHAPE MATERIAL 1 RCB	SPAN (ft) 4.00	RISE (ft) 3.00	MANNING n .012	INLET TYPE CONVENTIONAL

UMMARY OF CULVERI	FLOWS (cfs)	FILE:	30550PR		DATE	: 09-08-2004
ELEV (ft) TOTAI	. 1	2	3	4	5	6	ROADWAY ITR
112.76 501R 90.0	90.0	0.0	0.0	0.0	0.0	0.0	0.00 1
113.21 98.1	98.1	0.0	0.0	0.0	0.0	0.0	0.00 1
113.38 <i>1004</i> k 100.8	100.8	0.0	0.0	0.0	0.0	0.0	0.00 1
114.16 114.4	114.4	0.0	0.0	0.0	0.0	0.0	0.00 1
114.65 122.6	122.6	0.0	0.0	0.0	0.0	0.0	0.00 1
115.17 130.7	130.7	0.0	0.0	0.0	0.0	0.0	0.00 1
115.33 138.8	133.1	0.0	0.0	0.0	0.0	0.0	4.77 16
115.37 147.0	133.6	0.0	0.0	0.0	0.0	0.0	12.34 6
115.40 155.1	134.0	0.0	0.0	0.0	0.0	0.0	19.99 5
115.42 163.3		0.0	0.0	0.0	0.0	0.0	27.31 4
115.44 <i>5004</i> 8171.4	134.7	0.0	0.0	0.0	0.0	0.0	35.24 4
115.29 132.4	132.4	0.0	0.0	0.0	0.0	0.0 (OVERTOPPING

SUMMARY OF ITE	RATIVE SOLUTION ERI	RORS FILE: 305	50PR DAT	TE: 09-08-2004
HEAD	HEAD	TOTAL	FLOW	% FLOW
ELEV (ft)	ERROR (ft)	FLOW (cfs)	ERROR (cfs)	ERROR
112.76	0.000	90.00	0.00	0.00
113.21	0.000	98.14	0.00	0.00
113.38	0.000	100.80	0.00	0.00
114.16	0.000	114.42	0.00	0.00
114.65	0.000	122.56	0.00	0.00
115.17	0.000	130.70	0.00	0.00
115.33	-0.002	138.84	1.00	0.72
115.37	-0.003	146.98	1.05	0.71
115.40	-0.003	155.12	1.11	0.72
115.42	-0.004	163.26	1.59	0.97
115.44	-0.004	171.40	1.45	0.85
<1> TOLERANCE (ft) = 0.010			5) = 1.000

'URRENT	DATE :	09-08-2004
TRRENT	TIME:	10:44:10

									: 30550	
PEF	RFORMANCE	CURVE H	OR CUL	/ERT 1	- 1(4	.00 (ft	:) BY	3.00 (ft)) RCI	3
DIS- CHARGE FLOW (cfs)	HEAD- WATER (ELEV. (ft)	INLET CONTROL DEPTH (ft)	OUTLET CONTROI DEPTH (ft)	J FLOW TYPE <f4></f4>	NORMAL DEPTH (ft)	CRIT. DEPTH (ft)	OUTLET DEPTH (ft)	TW DEPTH (ft)	OUTLET VEL. (fps)	TW VEL. (fps)
90.00 98.14 100.80 114.42 122.56 130.70 133.07 133.59 134.01 134.37 134.71	112.76 113.21 113.38 114.16 114.65 115.17 115.33 115.37 115.39 115.42 115.44	5.03 5.18 6.00 6.54 7.13 7.31 7.35	5.21 5.38 6.16 6.65 7.17 7.33 7.37 7.39 7.42	2-M2c 2-M2c 2-M2c 6-FFc 6-FFc 6-FFc 6-FFc 6-FFc 6-FFc 6-FFc	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	2.51 2.66 2.71 2.95 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0	2.51 2.66 2.71 2.95 3.00 3.00 3.00 3.00 3.00 3.00 3.00	1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97	8.96 9.22 9.31 9.71 10.21 10.89 11.09 11.13 11.17 11.20 11.23	
	El. inlet El. inlet				.00 ft .00 ft		utlet ir nlet cre	nvert est	107.85	
INI INI OUT OUT NUM SLC	TE DATA ** LET STATIC LET ELEVAT TLET STATI TLET ELEVA MBER OF BA OPE (V/H) LVERT LENC	ON FION ION ATION ARRELS				****** 0.00 108.00 165.00 107.85 1 0.000 165.00	ft ft ft 9			

BARREL SHAPE BOX BARREL SPAN 4.00 ft BARREL RISE 3.00 ft BARREL MATERIAL CONCRETE BARREL MANNING'S n 0.012 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE (90-45 DEG.) INLET DEPRESSION NONE

> 15-16 _{G-20}

2

URRENT DATE: 09-08-2004 RRENT TIME: 10:44:10

FILE DATE: 09-08-2004 FILE NAME: 30550PR

TAILWATER

CONSTANT WATER SURFACE ELEVATION 109.82

_____ ROADWAY OVERTOPPING DATA _____

ROADWAY SURFACE	PAVED
EMBANKMENT TOP WIDTH	114.00 ft
CREST LENGTH	200.00 ft
OVERTOPPING CREST ELEVATION	115.29 ft

CURRENT DATE: 09-08-2004 URRENT TIME: 10:48:20

FILE DATE: 09-08-2004 FILE NAME: 32148EX

·				WA CULVERT HY-8, VERSI				
C U		SITE DA	TA		CULVERT	SHAPE,	MATERIAL,	INLET
L V NO. 1 2 3 4 5 6	INLET ELEV. (ft) 107.18	OUTLET ELEV. (ft) 106.21	CULVERT LENGTH (ft) 175.00	BARRELS SHAPE MATERIAL 1 RCB	SPAN (ft) 2.00	RISE (ft) 2.00	MANNING n .012	INLET TYPE CONVENTIONAL

JUMMARY OF CULV	ERT FLOW	S (cfs)		FILE: 3	2148EX		DATE:	09-08 - 2	2004
	TAL	1	2	3	4	5	6 R	OADWAY	ITR
112.60 50 YR 3	6.8 3	6.8	0.0	0.0	0.0	0.0	0.0	0.00	1
—		0.1	0.0	0.0	0.0	0.0	0.0	0.00	1
113.71 1004R 41	1.2 4	1.2	0.0	0.0	0.0	0.0	0.0	0.00	1
115.31 40	5.8 4	6.8	0.0	0.0	0.0	0.0	0.0	0.00	1
116.31 50	D.1 5	0.0	0.0	0.0	0.0	0.0	0.0	0.00	3
116.37 53	3.5 5	0.2	0.0	0.0	0.0	0.0	0.0	2.77	26
116.38 50	5.8 5	0.2	0.0	0.0	0.0	0.0	0.0	6.07	9
116.39 60	0.1 5	0.2	0.0	0.0	0.0	0.0	0.0	9.43	8
116.40 63	3.4 5	0.3	0.0	0.0	0.0	0.0	0.0	12.70	7
	5.8 5	0.3	0.0	0.0	0.0	0.0	0.0	15.90	6
116.41 5004R 7().1 5	0.3	0.0	0.0	0.0	0.0	0.0	19.26	6
116.35 50	D.1 5	0.1	0.0	0.0	0.0	0.0		ERTOPPI	-

CIMMADV	$\cap \nabla$	ITERATIVE				
SUMMARI	Or	TIERATIVE	SOLUTION	ERRORS	FILE:	32148EX

DATE: 09-08-2004

HEAD	HEAD	TOTAL	FLOW	% FLOW
ELEV (ft)	ERROR (ft)	FLOW (cfs)	ERROR (cfs)	ERROR
112.60	0.000	36.80	0.00	0.00
113.43	0.000	40.13	0.00	0.00
113.71	0.000	41.20	0.00	0.00
115.31	0.000	46.79	0.00	0.00
116.31	1.000	50.12	0.15	0.30
116.37	-0.001	53.45	0.52	0.97
116.38	-0.001	56.78	0.52	0.92
116.39	-0.001	60.11	0.46	0.77
116.40	-0.001	63.44	0.49	0.77
116.41	-0.001	66.77	0.60	0.90
116.41	-0.001	70.10	0.54	0.77

URRENT DATE: 09-08-2004 RRENT TIME: 10:48:20

PERF	ORMANCE	CURVE F	OR CULV	VERT 1	- 1 (2	.00 (ft	L) BY	2.00 (:	Et)) RCB	
DIS- CHARGE FLOW (cfs)	ELEV.	INLET CONTROL DEPTH (ft)	DEPTH	TYPE	NORMAL DEPTH (ft)	CRIT. DEPTH (ft)	OUTLET DEPTH (ft)		OUTLET VEL. (fps)	TW VEL. (fps)
36.80 40.13 41.20 46.79 49.97 50.15 50.19 50.22 50.25 50.27 50.29	112.60 113.43 113.71 115.31 116.31 116.37 116.38 116.39 116.40 116.41	5.64 5.86 7.25 8.13 8.18 8.19 8.20 8.21 8.21 8.22	6.25 6.53 8.13 9.13 9.19 9.20 9.21 9.22 9.23	6-FFC 6-FFC 6-FFC 6-FFC 6-FFC 6-FFC 6-FFC 6-FFC 6-FFC 6-FFC 6-FFC	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
El ***** SITE INLE INLE OUTL OUTL NUMB SLOP	DATA *: T STATIO T ELEVA ET STATI ET ELEVA ER OF BA E (V/H)	ON FION ION ATION	invert VERT IN	0. 	00 ft	El. ir	ft ft ft ft ft ft	est	106.21 0.00	
BARRI BARRI BARRI BARRI INLE' INLE'	EL SHAPP EL SPAN EL RISE EL MATEP EL MANNJ F TYPE	RIAL ING'S n AND WALL	BOX 2.0 2.0 CONCR 0.012 CONVE	0 ft 0 ft ETE NTIONA	L					

FILE DATE: 09-08-2004 FILE NAME: 32148EX URRENT DATE: 09-08-2004 "TRRENT TIME: 10:48:20

FILE DATE: 09-08-2004 FILE NAME: 32148EX

TAILWATER

CONSTANT WATER SURFACE ELEVATION 107.74

ROADWAY SURFACE	PAVED
EMBANKMENT TOP WIDTH	92.00 ft
CREST LENGTH	400.00 ft
OVERTOPPING CREST ELEVATION	116.35 ft

CURRENT DATE: 09-08-2004 CURRENT TIME: 10:49:20

FILE DATE: 09-08-2004 FILE NAME: 32148PR

				WA CULVERT HY-8, VERSI				
ר כ ע		SITE DA	ТА		CULVERT	SHAPE,	MATERIAL,	INLET
L V NO. 2 3 4 5 6	INLET ELEV. (ft) 107.20	OUTLET ELEV. (ft) 106.50	CULVERT LENGTH (ft) 190.00	BARRELS SHAPE MATERIAL 1 RCP	SPAN (ft) 2.50	RISE (ft) 2.50	MANNING n .012	INLET TYPE CONVENTIONAL

JUMMARY OF CULVER	I FLOWS (cfs))	FILE:	32148PR		DATE: 09-08-2004
ELEV (ft) TOTA	L 1	2	3	4	5	6 ROADWAY ITR
111.19 50TR 36.	8 36.8	0.0	0.0	0.0	0.0	0.0 0.00 1
111.90 40.	1 40.1	0.0	0.0	0.0	0.0	0.0 0.00 1
112.07 <i>1001</i> R 41.	2 41.2	0.0	0.0	0.0	0.0	0.0 0.00 1
113.09 46.	8 46.8	0.0	0.0	0.0	0.0	0.0 0.00 1
113.79 50.	1 50.1	0.0	0.0	0.0	0.0	0.0 0.00 1
114.47 53.	5 53.5	0.0	0.0	0.0	0.0	0.0 0.00 1
115.20 56.	B 56.8	0.0	0.0	0.0	0.0	0.0 0.00 1
115.95 60.	1 60.1	0.0	0.0	0.0	0.0	0.0 0.00 1
116.74 63.	4 63.4	0.0	0.0	0.0	0.0	0.0 0.00 1
116.85	B 63.9	0.0	0.0	0.0	0.0	0.0 0.00 30
117.01 500 YR 70.	1 64.5	0.0	0.0	0.0	0.0	0.0 0.51 30
117.00 64.	5 64.5	0.0	0.0	0.0	0.0	0.0 OVERTOPPING

SUMMARY OF ITERAT	IVE SOLUTION ERR	ORS FILE: 3214	18PR DAT	E: 09-08-2004
HEAD	HEAD	TOTAL	FLOW	% FLOW
ELEV (ft)	ERROR (ft)	FLOW (cfs)	ERROR (cfs)	ERROR
111.19	0.000	36.80	0.00	0.00
111.90	0.000	40.13	0.00	0.00
112.07	0.000	41.20	0.00	0.00
113.09	0.000	46.79	0.00	0.00
113.79	0.000	50.12	0.00	0.00
114.47	0.000	53.45	0.00	0.00
115.20	0.000	56.78	0.00	0.00
115.95	0.000	60.11	0.00	0.00
116.74	0.000	63.44	0.00	0.00
116.85	-0.003	66.77	2.91	4.36
117.01	-0.005	70.10	5.09	7.26
<l> TOLERANCE (ft</l>) = 0.010		2> TOLERANCE (%)) = 1.000

	DATE: 09-0 TIME: 10:4								: 09-08- : 32148F	
P	ERFORMANCE	CURVE F	OR CULV	ERT 1	- 1(2	.50 (ft	E) BY	2.50 (f	t)) RCF	
DIS- CHARG FLOW (cfs)	E WATER (INLET CONTROL DEPTH (ft)	OUTLET CONTROL DEPTH (ft)	FLOW TYPE <f4></f4>	NORMAL DEPTH (ft)	CRIT. DEPTH (ft)	OUTLET DEPTH (ft)	TW DEPTH (ft)	OUTLET VEL. (fps)	TW VEL. (fps)
36.8 40.1 41.2 46.7 50.1 53.4 56.7 60.1 63.4 63.8 64.5	3 111.90 0 112.07 9 113.09 2 113.79 5 114.47 8 115.20 1 115.95 4 116.74 6 116.85	3.89 4.31 4.45 5.26 5.80 6.37 6.98 7.63 8.31 8.40 8.53	4.70 4.87 5.89 6.59 7.27 8.00 8.75 9.54 9.65	2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 6-FFc 6-FFc 6-FFc 6-FFc	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	2.05 2.12 2.14 2.26 2.33 2.40 2.47 2.50 2.50 2.50 2.50	2.05 2.12 2.14 2.26 2.33 2.40 2.47 2.50 2.50 2.50 2.50	1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24	8.54 9.09 9.25 10.03 10.59 11.13 11.65 12.25 12.92 13.01 13.14	$\begin{array}{c} 0.00\\$
	El. inlet El. inlet				20 ft 00 ft		itlet in ilet cre		106.50 0.00	
***** SITE DATA **** CULVERT INVERT ************************************										
B, B, B, II II II	ULVERT DATA ARREL SHAPE ARREL DIAME ARREL MATEF ARREL MANNI NLET TYPE NLET EDGE A NLET DEPRES	E ETER RIAL ING'S n AND WALL	CIRCU 2.5 CONCR 0.012 CONVE	LAR 0 ft ETE NTIONA			ſ			

CURRENT DATE: 09-08-2004 ""RRENT TIME: 10:49:20

FILE DATE: 09-08-2004 FILE NAME: 32148PR

TAILWATER

CONSTANT WATER SURFACE ELEVATION 107.74

_____ ROADWAY OVERTOPPING DATA ____

ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH 114.00 ft CREST LENGTH 400.00 ft OVERTOPPING CREST ELEVATION 117.00 ft

CURRENT DATE: 09-08-2004 URRENT TIME: 10:55:24

FILE DATE: 09-08-2004 FILE NAME: 34848EX

				NA CULVERT HY-8, VERSI				
ר ב ר ע		SITE DA	ТА		CULVERT	SHAPE,	MATERIAL,	INLET
L V NO. 2 3 4 5 6	INLET ELEV. (ft) 103.88	OUTLET ELEV. (ft) 103.58	CULVERT LENGTH (ft) 150.00	BARRELS SHAPE MATERIAL 1 RCB	SPAN (ft) 5.00	RISE (ft) 2.00	MANNING n .012	INLET TYPE CONVENTIONAL

ូប	MMARY OF	CULVERT	FLOWS (cfs	3)	FILE:	34848EX		DATE	: 09-08-2004
E	LEV (ft)	TOTAL	1	2	3	4	5	6	ROADWAY ITR
	107.75	5048 75.0	75.0	0.0	0.0	0.0	0.0	0.0	0.00 1
	108.16	81.8	81.8	0.0	0.0	0.0	0.0	0.0	0.00 1
	108.30 "	09R 84.0	84.0	0.0	0.0	0.0	0.0	0.0	0.00 1
	109.12	95.3	95.3	0.0	0.0	0.0	0.0	0.0	0.00 1
	109.28	102.1	97.3	0.0	0.0	0.0	0.0	0.0	4.02 27
	109.30	108.9	97.6	0.0	0.0	0.0	0.0	0.0	10.33 7
_	109.32	115.7	97.9	0.0	0.0	0.0	0.0	0.0	16.88 6
	109.34	122.5	98.1	0.0	0.0	0.0	0.0	0.0	23.24 5
	109.36	129.2	98.3	0.0	0.0	0.0	0.0	0.0	29.99 5
	109.37	136.0	98.4	0.0	0.0	0.0	0.0	0.0	36.77 5
	109.3854	** 142.8	98.6	0.0	0.0	0.0	0.0	0.0	42.94 4
	109.25	97.0	97.0	0.0	0.0	0.0	0.0	0.0 0	OVERTOPPING

SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: 34848EX DATE: 09-08-2004 HEAD HEAD TOTAL FLOW % FLOW ELEV (ft) ERROR (ft) FLOW (cfs) ERROR (cfs) ERROR 107.75 0.000 75.00 0.00 0.00 108.16 0.000 81.78 0.00 0.00 108.30 0.000 84.00 0.00 0.00 109.12 0.000 95.34 0.00 0.00 109.28 -0.001 102.12 0.78 0.76 109.30 -0.001 108.90 0.96 0.88 109.32 -0.001 115.68 0.94 0.81 109.34 -0.002 122.46 1.15 0.94 109.36 -0.002 129.24 0.98 0.76 109.37 -0.001 136.02 0.80 0.59 109.38 -0.002 142.80 1.26 0.88 <1> TOLERANCE (ft) = 0.010 <2> TOLERANCE (%) = 1.000

1

```
15-25
```

G-29

	PERF	FORMANCE	CURVE F	OR CULV	- VERT 1	 1(_	5.00 (f	+) BY	2 00 (*	ft)) RCE	ι <u> </u>
									2.00 (.		
DIS		HEAD-		OUTLET			<u> </u>				
CHAI FL(ELEV.	CONTROL DEPTH	DEPTH				OUTLET	TW	OUTLET	TW
(cfs		(ft)	(ft)	(ft)	TYPE <f4></f4>	DEPTH (ft)	DEPTH (ft)	DEPTH (ft)	DEPTH		VEL
			(10)			(IC)	(10)	(IL)	(ft)	(fps)	(fps
	.00	107.75	3.82	3.87	2-M2c	2.00	1.92	1.92	1.85	7.83	0.0
	.78	108.16	4.25		6-FFc	2.00	2.00	2.00	1.85	8.18	0.0
84.		108.30			6-FFc	2.00	2.00	2.00	1.85	8.40	0.0
	.34	109.12			6-S2n	2.00	2.00	1.90	1.85	10.04	0.0
97.		109.27			6-S2n	2.00	2.00		1.85	10.24	0.0
97.		109.30	5.42		6-S2n	2.00	2.00		1.85	10.28	0.0
97.		109.32			6-S2n	2.00	2.00		1.85		0.0
98.		109.33			6-S2n	2.00	2.00		1.85	10.32	0.0
98.		109.35			6-S2n	2.00	2.00	1.90	1.85	10.34	0.0
	.45	109.37			6-S2n	2.00	2.00	1.90	1.85		0.0
98.	61	109.38	5.50	5.45	6-S2n	2.00	2.00	1.90	1.85	10.38	0.0
	El	. inlet	face in	.vert	103.	.88 ft	El. oi	utlet ir	nvert	103.58	ft
***	El El SITE	. inlet . inlet	face in throat	vert invert	103. 0.	.88 ft .00 ft	El. 01 El. 11	utlet ir hlet cre	nvert		ft
***	El El SITE INLE	. inlet . inlet C DATA **	face in throat *** CUL	vert invert	103. 0.	.88 ft .00 ft 	El. 01 El. 11 ****** 0.00	atlet ir alet cre	nvert	103.58	ft
***	El El SITE INLE INLE	. inlet . inlet C DATA ** CT STATIC CT ELEVAT	face in throat *** CUL N TION	vert invert	103. 0.	.88 ft .00 ft	El. 01 El. 11 ****** 0.00 103.88	itlet ir hlet cre ft ft	nvert	103.58	ft
***	El El SITE INLE INLE OUTL	. inlet . inlet C DATA ** CT STATIC CT ELEVAT ET STATI	face in throat *** CUL N TION CON	vert invert	103. 0.	.88 ft .00 ft *******	El. 01 El. in ****** 0.00 103.88 150.00	ft	nvert	103.58	ft
	El El SITE INLE INLE OUTL OUTL	DATA ** DATA ** T STATIC T ELEVAT ET STATI ET ELEVA	face in throat *** CUL N TION TION	vert invert	103. 0.	.88 ft .00 ft *******	El. 01 El. 11 ****** 0.00 103.88 150.00 103.58	ft	nvert	103.58	ft
	El El SITE INLE INLE OUTL OUTL NUMB	DATA ** DATA ** T STATIC T ELEVAT ST STATI SET ELEVA SER OF BA	face in throat *** CUL N TION TION	vert invert	103. 0.	.88 ft .00 ft *******	El. 01 El. 11 ****** 0.00 103.88 150.00 103.58 1	itlet in hlet cre ft ft ft ft	nvert	103.58	ft
	El El SITE INLE OUTL OUTL NUMB SLOP	DATA ** DATA ** T STATIC T ELEVAT ET STATI ET ELEVA ER OF BA E (V/H)	face in throat **** CUL ON TION CON ATION ARRELS	vert invert VERT IN	103. 0.	.88 ft .00 ft *******	El. 01 El. 11 ****** 0.00 103.88 150.00 103.58 1 0.002	ft ft ft ft ft	nvert	103.58	ft
	El El SITE INLE INLE OUTL OUTL NUMB SLOP CULV	DATA ** DATA ** T STATIC T ELEVAT ET STATI ET ELEVA ER OF BA E (V/H) TERT LENG	face in throat *** CUL N TION ON ATION ARRELS TH ALON	vert invert VERT IN G SLOPE	103. 0.	.88 ft .00 ft *******	El. 01 El. in ****** 0.00 103.88 150.00 103.58 1 0.002 150.00	ft ft ft ft ft	nvert	103.58	ft
* * *	El El SITE INLE OUTL OUTL NUMB SLOP CULV CULV	DATA ** DATA ** T STATIC T ELEVAT ET STATIC ET ELEVA ER OF BA E (V/H) TERT LENG	face in throat *** CUL N TION ON ATION ARRELS TH ALON	vert invert VERT IN G SLOPE Y *****	103. 0.	.88 ft .00 ft *******	El. 01 El. in ****** 0.00 103.88 150.00 103.58 1 0.002 150.00	ft ft ft ft ft	nvert	103.58	ft
* * *	El El SITE INLE OUTL OUTL NUMB SLOP CULV CULV BARR	DATA ** DATA ** T STATIC T ELEVAT ET STATIC ET ELEVA ER OF BA E (V/H) TERT LENG TERT DATA EL SHAPE	face in throat *** CUL N TION ON ATION ARRELS TH ALON	vert invert VERT IN G SLOPE Y ***** BOX	103. 0.	.88 ft .00 ft *******	El. 01 El. in ****** 0.00 103.88 150.00 103.58 1 0.002 150.00	ft ft ft ft ft	nvert	103.58	ft
***	El SITE INLE OUTL OUTL NUMB SLOP CULV BARR BARR	DATA ** DATA ** T STATIC T ELEVAT ET STATI ET ELEVA ER OF BA E (V/H) TERT LENG TERT DATA EL SHAPE EL SPAN	face in throat *** CUL N TION ON ARRELS TH ALON SUMMAR	vert invert VERT IN G SLOPE Y ***** BOX 5.0	103. 0. IVERT *	.88 ft .00 ft *******	El. 01 El. in ****** 0.00 103.88 150.00 103.58 1 0.002 150.00	ft ft ft ft ft	nvert	103.58	ft
***	El El SITE INLE OUTL OUTL NUMB SLOP CULV BARR BARR BARR	DATA ** DATA ** T STATIC T ELEVAT ET STATI ET ELEVA ER OF BA E (V/H) TERT LENG TERT DATA EL SHAPE EL SPAN EL RISE	face in throat *** CUL ON TION ON ATION ARRELS TH ALON	vert invert VERT IN G SLOPE Y ***** BOX 5.0 2.0	103. 0. IVERT *	.88 ft .00 ft *******	El. 01 El. in ****** 0.00 103.88 150.00 103.58 1 0.002 150.00	ft ft ft ft ft	nvert	103.58	ft
* * *	El El SITE INLE OUTL OUTL NUMB SLOP CULV BARR BARR BARR BARR BARR	DATA ** DATA ** T STATIC T ELEVAT ET STATI ET ELEVAT ET ELEVA ER OF BA E (V/H) TERT LENG TERT DATA EL SHAPE EL SPAN EL RISE EL MATER	face in throat *** CUL ON TION ON ATION ARRELS TH ALON SUMMAR	vert invert VERT IN G SLOPE Y ***** BOX 5.0 2.0 CONCR	103. 0. IVERT *	.88 ft .00 ft *******	El. 01 El. in ****** 0.00 103.88 150.00 103.58 1 0.002 150.00	ft ft ft ft ft	nvert	103.58	ft
* * *	El El SITE INLE OUTL OUTL NUMB SLOP CULV CULV BARR BARR BARR BARR BARR	DATA ** DATA ** T STATIC T ELEVAT ET STATIC ET ELEVA ET ELEVA ET ELEVA ET LENG ET LENG EL SPAN EL SPAN EL RISE EL MATER EL MANNI	face in throat *** CUL ON TION ON ATION ARRELS TH ALON SUMMAR	Vert invert VERT IN VERT IN Y ***** BOX 5.0 2.0 CONCR 0.012	103. 0. IVERT *	.88 ft .00 ft	El. 01 El. in ****** 0.00 103.88 150.00 103.58 1 0.002 150.00	ft ft ft ft ft	nvert	103.58	ft
***	El El SITE INLE OUTL OUTL NUMB SLOP CULV CULV BARR BARR BARR BARR BARR BARR INLE	DATA ** DATA ** T STATIC T ELEVAT ET STATIC ET ELEVAT ET ELEVA ET ELEVA ET LENG ET LENG EL SPAN EL SHAPE EL SHAPE EL SHAPE EL MATER EL MANNI T TYPE	face in throat *** CUL NON TION TION ARRELS TH ALON STH ALON SUMMAR	Vert invert VERT IN VERT IN 9 ***** BOX 5.0 2.0 CONCR 0.012 CONVE	103. 0. IVERT * IVERT * 0 ft 0 ft ETE INTIONA	.88 ft .00 ft ********	El. 01 El. 11 ****** 0.00 103.88 150.00 103.58 1 0.002 150.00 *****	ft ft ft ft ft ft	nvert	103.58	ft
***	El El SITE INLE OUTL OUTL NUMB SLOP CULV BARR BARR BARR BARR BARR INLE INLE	DATA ** DATA ** T STATIC T ELEVAT ET STATIC ET ELEVA ET ELEVA ET ELEVA ET LENG ET LENG EL SPAN EL SPAN EL RISE EL MATER EL MANNI	face in throat *** CUL N TION TION ARRELS TH ALON STH ALON STH ALON STH ALON ARRELS TH ALON ARRELS	Vert invert VERT IN VERT IN 9 ***** BOX 5.0 2.0 CONCR 0.012 CONVE	103. 0. IVERT * IVERT * 0 ft 0 ft ETE INTIONA	.88 ft .00 ft ********	El. 01 El. 11 ****** 0.00 103.88 150.00 103.58 1 0.002 150.00 *****	ft ft ft ft ft ft	nvert	103.58	ft

'URRENT DATE: 09-08-2004 "RRENT TIME: 10:55:24 FILE DATE: 09-08-2004 FILE NAME: 34848EX

TAILWATER

CONSTANT WATER SURFACE ELEVATION 105.43

_____ ROADWAY OVERTOPPING DATA _____

ROADWAY SURFACE	PAVED
EMBANKMENT TOP WIDTH	92.00 ft
CREST LENGTH	300.00 ft
OVERTOPPING CREST ELEVATION	109.25 ft

CURRENT DATE: 09-08-2004 'URRENT TIME: 10:56:28

FILE DATE: 09-08-2004 FILE NAME: 34848PR

				WA CULVERT HY-8, VERSI				
C U		SITE DA	ТА		CULVERT	SHAPE,	MATERIAL,	INLET
L NO. 1 2 3 4 5 6	INLET ELEV. (ft) 103.90	OUTLET ELEV. (ft) 103.58	CULVERT LENGTH (ft) 177.00	BARRELS SHAPE MATERIAL 1 RCB	SPAN (ft) 5.00	RISE (ft) 2.00	MANNING n .012	INLET TYPE CONVENTIONAL

JUMMARY OF CUL	VERT FLOWS	S (cfs)		FILE: 34	1848PR		DATE: 0	9-08-2	004
• • • –	OTAL	1	2	3	4	5	6 RC	ADWAY	ITR
107.90 50 YR	75.0 75	5.0	0.0	0.0	0.0	0.0	0.0	0.00	1
108.34	81.8 81	1.8	0.0	0.0	0.0	0.0	0.0	0.00	1
108.49 /00%R	84.0 84	1.0	0.0	0.0	0.0	0.0	0.0	0.00	1
109.33	95.3 95	5.3	0.0	0.0	0.0	0.0	0.0	0.00	1
109.88 1	02.1 102	2.1	0.0	0.0	0.0	0.0	0.0	0.00	1
110.20 1	08.9 105	5.8	0.0	0.0	0.0	0.0	0.0	0.00	30
110.41 1	15.7 108	3.2	0.0	0.0	0.0	0.0	0.0	6.54	23
110.43 1	22.5 108	3.4	0.0	0.0	0.0	0.0	0.0	12.87	6
110.45 1	29.2 108	8.6	0.0	0.0	0.0	0.0	0.0	19.76	6
110.47 1	36.0 108	8.8	0.0	0.0	0.0	0.0	0.0	26.17	5
110.48 500YA1	42.8 109	9.0	0.0	0.0	0.0	0.0	0.0	32.92	5
110.37 1	07.7 107	.7	0.0	0.0	0.0	0.0	0.0 OVE	RTOPPI	NG

SUMMARY OF ITERAT	IVE SOLUTION ERR	ORS FILE: 348	48PR DAT	E: 09-08-2004
HEAD	HEAD	TOTAL	FLOW	% FLOW
ELEV (ft)	ERROR (ft)	FLOW (cfs)	ERROR (cfs)	ERROR
107.90	0.000	75.00	0.00	0.00
108.34	0.000	81.78	0.00	0.00
108.49	0.000	84.00	0.00	0.00
109.33	0.000	95.34	0.00	0.00
109.88	0.000	102.12	0.00	0.00
110.20	-0.006	108.90	3.12	2.87
110.41	-0.002	115.68	0.99	0.86
110.43	-0.002	122.46	1.20	0.98
110.45	-0.001	129.24	0.86	0.67
110.47	-0.002	136.02	1.04	0.76
110.48	~0.002	142.80	0.90	0.63

/5-27 G-31

URRENT	DATE:	09-08-2004
RENT	TIME:	10:56:28

PERF	ORMANCE	CURVE E	OR CULV	ERT 1	- 1(5	.00 (ft	:) BY	2.00 (:	ft)) RCI	3
DIS- CHARGE FLOW (cfs)	HEAD- WATER (ELEV. (ft)	INLET CONTROL DEPTH (ft)	OUTLET CONTROL DEPTH (ft)	TYPE	NORMAL DEPTH (ft)	CRIT. DEPTH (ft)	OUTLET DEPTH (ft)	TW DEPTH (ft)	OUTLET VEL. (fps)	TW VEL. (fps)
75.00 81.78 84.00 95.34 102.12 105.78 108.15 108.40 108.62 108.81 108.98		4.25 4.40 5.24 5.79 6.12 6.35 6.37 6.40 6.41	4.44 4.59 5.43 5.98 6.30 6.51 6.53 6.55 6.57	2-M2c 6-FFc 6-FFc 6-FFc 6-FFc 6-FFc 6-FFc 6-FFc 6-FFc 6-FFc	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	1.92 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2	1.92 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2	1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85	7.83 8.18 8.40 9.53 10.21 10.58 10.81 10.84 10.86 10.88 10.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	. inlet . inlet						itlet in ilet cre		103.58 0.00	
INLE INLE OUTL OUTL NUMB SLOP	***** SITE DATA ***** CULVERT INVERT ************************************									
BARR BARR BARR BARR INLE INLE	TERT DATA EL SHAPH EL SPAN EL RISE EL MATER EL MANNI T TYPE T EDGE A T DEPRES	E RIAL ING'S n AND WALL	BOX 5.0 2.0 CONCR 0.012 CONVE	0 ft 0 ft ETE NTIONA	L					

URRENT DATE: 09-08-2004 RRENT TIME: 10:56:28

FILE DATE: 09-08-2004 FILE NAME: 34848PR

TAILWATER

CONSTANT WATER SURFACE ELEVATION 105.43

ROADWAY OVERTOPPING DATA _____

ROADWAY SURFACE	PAVED
EMBANKMENT TOP WIDTH	114.00 ft
CREST LENGTH	300.00 ft
OVERTOPPING CREST ELEVATION	110.37 ft

GURRENT DATE: 09-08-2004 'URRENT TIME: 11:02:41

FILE DATE: 09-08-2004 FILE NAME: 51172EX

	FHWA CULVERT ANALYSIS									
C		SITE DA	ТА		CULVERT	SHAPE,	MATERIAL,	INLET		
0 L V NO. 2 3 4 5 6	INLET ELEV. (ft) 97.00	OUTLET ELEV. (ft) 96.61	CULVERT LENGTH (ft) 150.00	BARRELS SHAPE MATERIAL 1 RCB	SPAN (ft) 4.00	RISE (ft) 3.00	MANNING n .012	INLET TYPE CONVENTIONAL		

UMMARY OF CULVERT	FLOWS (cfs)		FILE:	51172EX		DATE: 09-08-2004
ELEV (ft) TOTAL	1	2	3	4	5	6 ROADWAY ITR
101.60 504R 90.0	90.0	0.0	0.0	0.0	0.0	0.0 0.00 1
102.03 98.1	98.1	0.0	0.0	0.0	0.0	0.0 0.00 1
102.18 <i>1009</i> 8 100.8	100.8	0.0	0.0	0.0	0.0	0.0 0.00 1
102.77 114.4	110.8	0.0	0.0	0.0	0.0	0.0 0.00 30
102.85 122.6	112.0	0.0	0.0	0.0	0.0	0.0 9.41 11
102.87 130.7	112.4	0.0	0.0	0.0	0.0	0.0 17.22 6
102.89 138.8	112.7	0.0	0.0	0.0	0.0	0.0 24.84 5
102.91 147.0	113.0	0.0	0.0	0.0	0.0	0.0 32.90 5
102.93 155.1	113.3	0.0	0.0	0.0	0.0	0.0 40.98 5
102.94 163.3	113.5	0.0	0.0	0.0	0.0	0.0 48.37 4
102.96 <i>50°4</i> R171.4	113.8	0.0	0.0	0.0	0.0	0.0 56.26 4
102.80 111.2	111.2	0.0	0.0	0.0	0.0	0.0 OVERTOPPING

SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: 51172EX DATE: 09-08-2004

HEAD	HEAD	TOTAL	FLOW	% FLOW
ELEV (ft)	ERROR (ft)	FLOW (cfs)	ERROR (cfs)	ERROR
101.60	0.000	90.00	0.00	0.00
102.03	0.000	98.14	0.00	0.00
102.18	0.000	100.80	0.00	0.00
102.77	-0.007	114.42	3.58	3.13
102.85	-0.002	122.56	1.19	0.97
102.87	-0.002	130.70	1.12	0.86
102.89	-0.002	138.84	1.30	0.94
102.91	-0.002	146.98	1.07	0.73
102.93	-0.002	155.12	0.85	0.55
102.94	-0.002	163.26	1.34	0.82
102.96	-0.003	171.40	1.34	0.78
TOLERANCE (ft)	2) = 0.010		<2> TOLERANCE (%) = 1.000

		TE: 09-(ME: 11:(: 09-08- : 51172E	
	PERF	ORMANCE	CURVE F	OR CULV	VERT 1	- 1(4	.00 (ft	E) BY	3.00 (1	Et)) RCB	-
DIS CHAI FLO (cfs	RGE Owi	HEAD- WATER (ELEV. (ft)	INLET CONTROL DEPTH (ft)	OUTLET CONTROI DEPTH (ft)	J FLOW TYPE <f4></f4>	NORMAL DEPTH (ft)	CRIT. DEPTH (ft)	OUTLET DEPTH (ft)	TW DEPTH (ft)	OUTLET VEL. (fps)	TW VEL. (fps)
	.84 .96 .36 .70 .01 .30 .54 .80	101.60 102.03 102.18 102.77 102.84 102.87 102.89 102.91 102.93 102.94 102.96	4.60 5.03 5.18 5.77 5.84 5.87 5.89 5.91 5.93 5.94 5.94 5.96	4.77 5.02 5.60 5.68 5.70 5.72 5.74 5.75 5.76 5.78	2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c 2-M2c	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	2.51 2.66 2.71 2.88 2.90 2.91 2.92 2.92 2.93 2.93 2.93 2.94	2.51 2.66 2.71 2.88 2.90 2.91 2.92 2.92 2.93 2.93 2.93 2.94	0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88	8.96 9.22 9.31 9.61 9.64 9.65 9.66 9.67 9.68 9.68 9.68 9.69	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
			throat		97. 0.			ilet cre		0.00	
****	**** SITE DATA ***** CULVERT INVERT ************************************										
****	BARRE BARRE BARRE BARRE BARRE INLET	EL SHAPE EL SPAN EL RISE EL MATEF EL MANNI EL MANNI T TYPE	IAL NG'S n ND WALL	BOX 4.0 3.0 CONCR 0.012 CONVE	0 ft 0 ft ETE NTIONA	L	***** 5 DEG.)				

2

URRENT DATE: 09-08-2004

FILE DATE: 09-08-2004 FILE NAME: 51172EX

TAILWATER

CONSTANT WATER SURFACE ELEVATION 97.49

_____ ROADWAY OVERTOPPING DATA _____

ROADWAY SURFACE	PAVED
EMBANKMENT TOP WIDTH	92.00 ft
CREST LENGTH	300.00 ft
OVERTOPPING CREST ELEVATION	102.80 ft

CURRENT DATE: 09-08-2004 'URRENT TIME: 11:03:58

FILE DATE: 09-08-2004 FILE NAME: 51172PR

C U		SITE	DATA		C	ULVERT	SHAPE,	MATERIAL,	INLET
L V JO. 1 2 3 4 5 6	INLET ELEV. (ft) 97.00	OUTL ELE (ft) 96.0	V. LENGTI) (ft)	H SH MA	RRELS APE TERIAL RCB	SPAN (ft) 4.00	RISE (ft) 3.00	MANNING n .012	INLET TYPE CONVENTIONAL
				I					
			FLOWS (cfs			51172PI	2	DATE	2: 09-08-2004
LEV	(ft) 5	TOTAL	1	2	3	4	5	6	C: 09-08-2004 ROADWAY ITH
LEV 101	(ft) 1.60 <i>50 4</i> 2	IOTAL 90.0	1 90.0	2	3 0.0	4 0.0	5 0.0	6 0.0	ROADWAY ITF 0.00 1
LEV 101 102	(ft) 1.60 <i>50 YR</i> 2.03	FOTAL 90.0 98.1	1 90.0 98.1	2 0.0 0.0	3 0.0 0.0	4 0.0 0.0	5 0.0 0.0	6 0.0 0.0	ROADWAY ITF 0.00 1 0.00 1
LEV 101 102 102	(ft) 1.60 50 YR 2.03 2.18100YR 1	FOTAL 90.0 98.1 100.8	1 90.0 98.1 100.8	2 0.0 0.0 0.0	3 0.0 0.0 0.0	4 0.0 0.0 0.0	5 0.0 0.0 0.0	6 0.0 0.0 0.0	ROADWAY ITF 0.00 1 0.00 1 0.00 1 0.00 1
LEV 101 102 102 103	(ft) 1.60 <i>50 YR</i> 2.03 2.18 <i>100YR</i> 3.00	TOTAL 90.0 98.1 100.8 114.4	1 90.0 98.1 100.8 114.4	2 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0	5 0.0 0.0 0.0 0.0	6 0.0 0.0 0.0 0.0	ROADWAY ITF 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1
LEV 101 102 103 103	(ft) 1.60 <i>50 YR</i> 2.03 2.18 <i>100YR</i> 3.00 3.28	TOTAL 90.0 98.1 100.8 114.4 122.6	1 90.0 98.1 100.8 114.4 118.6	2 0.0 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0	5 0.0 0.0 0.0 0.0 0.0	6 0.0 0.0 0.0 0.0 0.0	ROADWAY ITF 0.00 1 0.00 1 0.00 1 0.00 1 0.00 30
LEV 102 102 103 103	(ft) 1.60 <i>50 YR</i> 2.03 2.18 <i>100YR</i> 3.00 3.28 3.39	FOTAL 90.0 98.1 100.8 114.4 122.6 130.7	1 90.0 98.1 100.8 114.4 118.6 120.3	2 0.0 0.0 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0 0.0	5 0.0 0.0 0.0 0.0 0.0 0.0	6 0.0 0.0 0.0 0.0 0.0 0.0	ROADWAY ITH 0.00 1 0.00 1 0.00 1 0.00 1 0.00 30 9.50 14
LEV 102 102 103 103 103	(ft) 1.60 <i>50 YR</i> 2.03 2.18 <i>100YR</i> 3.00 3.28 3.39 3.41	FOTAL 90.0 98.1 100.8 114.4 122.6 130.7 138.8	1 90.0 98.1 100.8 114.4 118.6 120.3 120.6	2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 0.0 0.0 0.0 0.0 0.0 0.0	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ROADWAY ITF 0.00 1 0.00 1 0.00 1 0.00 1 0.00 30 9.50 14 17.12 6
LEV 102 102 103 103 103 103	(ft) 1.60 <i>50</i> YR 2.03 2.18 <i>looYR</i> 3.00 3.28 3.39 3.41 3.43	FOTAL 90.0 98.1 100.8 114.4 122.6 130.7 138.8 147.0	1 90.0 98.1 100.8 114.4 118.6 120.3 120.6 120.9	2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ROADWAY ITF 0.00 1 0.00 1 0.00 1 0.00 1 0.00 30 9.50 14 17.12 6 24.73 5
LEV 102 102 103 103 103 103	(ft) 1.60 <i>50</i> % 2.03 2.18 <i>loo</i> % 3.00 3.28 3.39 3.41 3.43 3.43 3.45	FOTAL 90.0 98.1 100.8 114.4 122.6 130.7 138.8 147.0 155.1	1 90.0 98.1 100.8 114.4 118.6 120.3 120.6 120.9 121.2	2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 4 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ROADWAY ITF 0.00 1 0.00 1 0.00 1 0.00 1 0.00 30 9.50 14 17.12 6 24.73 5 32.82 5
LEV 102 102 103 103 103 103 103	(ft) 1.60 <i>50</i> % 2.03 2.18 <i>loo</i> % 3.00 3.28 3.39 3.41 3.43 3.43 3.45	FOTAL 90.0 98.1 100.8 114.4 122.6 130.7 138.8 147.0 155.1 163.3	1 90.0 98.1 100.8 114.4 118.6 120.3 120.6 120.9	2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ROADWAY ITF 0.00 1 0.00 1 0.00 1 0.00 1 0.00 30 9.50 14 17.12 6 24.73 5

HEAD	HEAD	TOTAL	FLOW	% FLOW
ELEV (ft)	ERROR (ft)	FLOW (cfs)	ERROR (cfs)	ERRÓR
101.60	0.000	90.00	0.00	0.00
102.03	0.000	98.14	0.00	0.00
102.18	0.000	100.80	0.00	0.00
103.00	0.000	114.42	0.00	0.00
103.28	-0.006	122.56	3.96	3.23
103.39	-0.001	130.70	0.91	0.70
103.41	-0.002	138.84	1.08	0.78
103.43	-0.002	146.98	1.31	0.89
103.45	-0.002	155.12	1.08	0.70
103.47	-0.003	163.26	1.61	0.99
103.48	-0.003	171.40	1.56	0.91
<1> TOLERANCE (ft) = 0.010		<pre>2> TOLERANCE (%)</pre>	= 1.000

URRENT DATE: 09-08-2004 ""RRENT TIME: 11:03:58

FILE DATE: 09-08-2004 FILE NAME: 51172PR

PERF	ORMANCE C	URVE F	OR CULV	VERT 1	~ 1(4	4.00 (fi	t) BY	3.00 (1	ft)) RCB	
DIS- CHARGE FLOW (cfs)	WATER CO ELEV. D		OUTLET CONTROI DEPTH (ft)	TYPE	NORMAL DEPTH (ft)	CRIT. DEPTH (ft)	OUTLET DEPTH (ft)	TW DEPTH (ft)	OUTLET VEL. (fps)	TW VEL. (fps)
90.00 98.14 100.80 114.42 118.60 120.29 120.64 120.94 121.22 121.46 121.70	103.39 103.41	6.47	4.90 5.13 5.95 6.20 6.30 6.32 6.34 6.36 6.37	2-M2c 2-M2c 2-M2c 6-S2n 6-S2n 6-S2n 6-S2n 6-S2n 6-S2n 6-S2n 6-S2n	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	2.51 2.66 2.71 2.95 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0	2.51 2.66 2.71 2.95 2.90 2.90 2.90 2.90 2.90 2.90 2.90	0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89	$\begin{array}{r} 8.96 \\ 9.22 \\ 9.31 \\ 9.71 \\ 10.22 \\ 10.37 \\ 10.40 \\ 10.43 \\ 10.45 \\ 10.47 \\ 10.49 \end{array}$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	. inlet fa . inlet th			97. 0.	00 ft 00 ft		itlet in ilet cre		96.60	
INLE' OUTLI OUTLI NUMBI SLOPI	DATA **** I STATION I ELEVATIO ET STATION ET ELEVATI ER OF BARH E (V/H) ERT LENGTH	ON N I ON RELS				****** 0.00 97.00 170.00 96.60 1 0.002 170.00	ft ft ft			
BARRI BARRI BARRI BARRI INLET INLET	EL SHAPE EL SPAN	AL G'S n D WALL	BOX 4.0 3.0 CONCR 0.012 CONVE	0 ft 0 ft ETE NTIONA	L					

'URRENT DATE: 09-08-2004 "TRRENT TIME: 11:03:58

FILE DATE: 09-08-2004 FILE NAME: 51172PR

TAILWATER

CONSTANT WATER SURFACE ELEVATION 97.49

ROADWAY SURFACE	PAVED
EMBANKMENT TOP WIDTH	114.00 ft
CREST LENGTH	300.00 ft
OVERTOPPING CREST ELEVATION	103.34 ft

CURRENT DATE: 10-13-2004 'URRENT TIME: 14:34:12

FILE DATE: 10-13-2004 FILE NAME: 55353EX

	FHWA CULVERT ANALYSIS HY-8, VERSION 6.1												
		SITE DA	TA		CULVERT	SHAPE,	MATERIAL	, INLET					
U L NO. 1 2 3 4 5 6	INLET ELEV. (ft) 94.81	OUTLET ELEV. (ft) 94.80	CULVERT LENGTH (ft) 150.00	BARRELS SHAPE MATERIAL 3 RCB	SPAN (ft) 6.00	RISE (ft) 5.00	MANNING n .012	INLET TYPE CONVENTIONAL					

UMMARY OF CULVERT	FLOWS (cfs	3)	FILE:	55353EX		DATE :	: 10-13-2004
ELEV (ft) TOTAL	1	2	3	4	5	6	ROADWAY ITR
98.34 5° 9R 273.4	273.4	0.0	0.0	0.0	0.0	0.0	0.00 1
98.43 288.1	288.1	0.0	0.0	0.0	0.0	0.0	0.00 1
98.52 302.7	302.7	0.0	0.0	0.0	0.0	0.0	0.00 1
98.60 <i>100 YR</i> 314.7	314.7	0.0	0.0	0.0	0.0	0.0	0.00 1
98.71 332.0	332.0	0.0	0.0	0.0	0.0	0.0	0.00 1
98.81 346.7	346.7	0.0	0.0	0.0	0.0	0.0	0.00 1
98.91 361.4	361.4	0.0	0.0	0.0	0.0	0.0	0.00 1
99.01 376.0	376.0	0.0	0.0	0.0	0.0	0.0	0.00 1
99.11 390.7	390.7	0.0	0.0	0.0	0.0	0.0	0.00 1
99.18 405.3	405.3	0.0	0.0	0.0	0.0	0.0	0.00 1
99.31 5001R 420.0	420.0	0.0	0.0	0.0	0.0	0.0	0.00 1
103.18 948.4	948.4	0.0	0.0	0.0	0.0	0.0 0	VERTOPPING

SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: 55353EX

DATE: 10-13-2004

HEAD	HEAD	TOTAL	FLOW	% FLOW
ELEV (ft)	ERROR (ft)	FLOW (cfs)	ERROR (cfs)	ERROR
98.34	0.000	273.40	0.00	0.00
98.43	0.000	288.06	0.00	0.00
98.52	0.000	302.72	0.00	0.00
98.60	0.000	314.70	0.00	0.00
98.71	0.000	332.04	0.00	0.00
98.81	0.000	346.70	0.00	0.00
98.91	0.000	361.36	0.00	0.00
99.01	0.000	376.02	0.00	0.00
99.11	0.000	390.68	0.00	0.00
99.18	0.000	405.34	0.00	0.00
99.31	0.000	420.00	0.00	0.00

		E: 10-1 E: 14:1	13-2004 34:12	_						: 10-13- : 55353E	
	PERFO	RMANCE	CURVE F	OR CULV	ERT 1	-3(6	5.00 (f	t) BY	5.00 (1	Et)) RCB	
DIS CHAR FLC (cfs	RGE W	ELEV.	INLET CONTROL DEPTH (ft)	DEPTH	TYPE	DEPTH	DEPTH	OUTLET DEPTH (ft)	DEPTH	OUTLET VEL. (fps)	TW VEL. (fps)
273. 288. 302. 314. 332. 346. 376. 376. 390. 405. 420.	06 72 70 04 70 36 02 68 34	98.43 98.52 98.60 98.71 98.81 98.91 99.01 99.11 99.18		3.90 4.00 4.10 4.20 4.30 4.37	3-M2t 3-M2t 3-M2t 3-M2t 3-M2t 3-M2t 3-M2t 3-M2t 3-M2t 3-M2t	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1.93 2.00 2.07 2.12 2.20 2.26 2.33 2.39 2.45 2.51 2.51 2.57	2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65	2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65	6.35 6.60 6.96 7.27 7.58 7.88	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
			face in throat					utlet in nlet cre		94.80 0.00	
	***** SITE DATA **** CULVERT INVERT ************************************										
	BARRE BARRE BARRE BARRE INLET INLET	L SHAPE L SPAN L RISE L MATER L MANNI TYPE	IAL NG'S n ND WALL	BOX 6.0 5.0 CONCR 0.012 CONVE	0 ft 0 ft ETE	L	***** 5 DEG.)				

URRENT DATE: 10-13-2004

FILE DATE: 10-13-2004 FILE NAME: 55353EX

TAILWATER

CONSTANT WATER SURFACE ELEVATION 97.45

ROADWAY SURFACE EMBANKMENT TOP WIDTH CREST LENGTH OVERTOPPING CREST ELEVATION PAVED 92.00 ft 200.00 ft 103.18 ft

CURRENT DATE: 10-13-2004 URRENT TIME: 14:50:03

FILE DATE: 10-13-2004 FILE NAME: 55353PR

TT -		SITE	DATA			CULVERT	SHAPE,	MATERIAL,	INLET
L V NO. 1 2 3 4 5 6	INLET ELEV. (ft) 94.81	ELE (ft	V. LENGTH) (ft)	I S M	ARRELS HAPE ATERIAL RCB	SPAN (ft) 6.00	RISE (ft) 5.00	MANNING n .012	INLET TYPE CONVENTIONAL
	RY OF C	ULVERT		:)	FILE	: 55353P		DATE	: 10-13-2004
	(ft)		1	2	3	4	5	6	ROADWAY ITR
	3.35 <i>501</i>		273.4	0.0	0.0	0.0	0.0	0.0	0.00 1
	3.45	288.1	288.1	0.0	0.0	0.0	0.0	0.0	0.00 1
	3.54	302.7	302.7	0.0	0.0	0.0	0.0	0.0	0.00 1
	3.58 <i>1009</i>	-	314.7	0.0	0.0	0.0	0.0	0.0	0.00 1
	3.73	332.0	332.0	0.0	0.0	0.0	0.0	0.0	0.00 1
	3.79	346.7	346.7	0.0	0.0	0.0	0.0		0.00 1
	3.93	361.4	361.4	0.0	0.0	0.0	0.0		0.00 1
	9.03	376.0	376.0	0.0	0.0	0.0	0.0	0.0	0.00 1
- 99	9.10	390.7	390.7	0.0	0.0	0.0	0.0	0.0	0.00 1
	9.23	405.3	405.3	0.0	0.0	0.0	0.0	0.0	0.00 1
	9.33 <i>5001</i>	% 420.0 969.6	420.0 969.6	0.0 0.0	0.0	0.0	0.0	0.0	0.00 1
99	3.39				0.0	0.0	0.0	~ ~	OVERTOPPING

HEAD	HEAD	TOTAL	FLOW	% FLOW
ELEV (ft)	ERROR (ft)	FLOW (cfs)	ERROR (cfs)	ERROR
98.35	0.000	273.40	0.00	0.00
98.45	0.000	288.06	0.00	0.00
98.54	0.000	302.72	0.00	0.00
98.58	0.000	314.70	0.00	0.00
98.73	0.000	332.04	0.00	0.00
98.79	0.000	346.70	0.00	0.00
98.93	0.000	361.36	0.00	0.00
99.03	0.000	376.02	0.00	0.00
99.10	0.000	390.68	0.00	0.00
99.23	0.000	405.34	0.00	0.00
99.33	0.000	420.00	0.00	0.00
<1> TOLERANCE (ft) = 0.010		<pre><2> TOLERANCE (%)</pre>	= 1.000

URRENT DA									: 10-13- : 55353F		
PERF	ORMANCE	CURVE F	OR CULV	VERT 1	- 3 (6	.00 (ft	:) BY	5.00 (:	ft)) RCE	3	
DIS- CHARGE FLOW (cfs)	ELEV.	INLET CONTROL DEPTH (ft)	OUTLET CONTROI DEPTH (ft)	TYPE	NORMAL DEPTH (ft)	CRIT. DEPTH (ft)	OUTLET DEPTH (ft)	TW DEPTH (ft)	OUTLET VEL. (fps)	TW VEL. (fps)	
273.40 288.06 302.72 314.70 332.04 346.70 361.36 376.02 390.68 405.34 420.00	98.35 98.45 98.54 98.73 98.73 98.79 98.93 99.03 99.03 99.10 99.23 99.33	3.39 3.50 3.59 3.72 3.83 3.93 4.04 4.14 4.24 4.24 4.34	3.64 3.73 3.77 3.92 3.98 4.12 4.22 4.22 4.29 4.42 4.52	3-M2t 3-M2t 3-M2t 3-M2t 3-M2t 3-M2t 3-M2t 3-M2t 3-M2t 3-M2t 3-M2t	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1.93 2.00 2.07 2.12 2.20 2.26 2.33 2.39 2.45 2.51 2.57	2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65	2.65	6.04 6.35 6.60 6.96 7.27 7.58 7.88 8.19 8.50 8.81	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
		face in throat					itlet in ilet cre		94.80 0.00		
INLE' INLE' OUTLI OUTLI NUMBI SLOPI	***** SITE DATA ***** CULVERT INVERT ************************************										
BARRI BARRI BARRI BARRI INLET INLET	EL SHAPE EL SPAN EL RISE EL MATER EL MANNI I TYPE	IAL NG'S n ND WALL	BOX 6.0 5.0 CONCR 0.012 CONVE	0 ft 0 ft ETE	L	***** 5 DEG.)					

2

URRENT DATE: 10-13-2004

FILE DATE: 10-13-2004 FILE NAME: 55353PR

TAILWATER

CONSTANT WATER SURFACE ELEVATION 97.45

ROADWAY OVERTOPPING DATA ______

ROADWAY SURFACE EMBANKMENT TOP WIDTH CREST LENGTH OVERTOPPING CREST ELEVATION

PAVED 114.00 ft 200.00 ft 103.39 ft

Rational Method: Peak Runoff Calculations

Project:	SR 25/ US 27			By: BD	Date: 9/7/04
Location:	Lake County			Checked:	Date:
Survey and the				Zone 7 Zone 7	50 yr 100 yr 500 yr
108105100	Total	Total	Onsite Impervious	50 yr 100 yr	Peak Peak Pcak
Ganting	OL	1 7 60			

s Sta	ition	Size	Area (ft^2)	Area (acres)	Runoff C. Pervious	Arca (acres)	Area (acres)	Runoff C Impervious	TOC (min)	Rainfall Int. (in/lir)	Rainfall Int. (in/ir)	Runoff, Q (ft^3/sec)	Runoff, Q (ft^3/sec)	Runoff, Q (ft^3/sec)
	287+13	(2) 10' x 4' CBC	34,263,721	786.58	0.10	7.51	2.02	0.95	95.18	3.0	3.5	285,79	344,13	470
	553+53	(3) 6' x 5' CBC	57,709,487	1324.82	0.10	6.15	1.58	0.95	193,36	1.7	1.9	273.39	314.65	420

Rational Equation Q = CIA

WORKSHEET 3: Time of Concentration (Tc) or Travel Time (Tt)

Project: Location:	SR 25/ US 27 Lake County		By:B.D Checked:	_ Date		3/3/04	_	
Circle One:	Present	Developed	CD 287+13				_	
Circle One:	T _c	T_t through subarea					_	
W	vorksheet.	segments per flow type can be u						
Sheet <u>flow</u>	(Applicable to T _c only)	Segment ID	[ך	
		, 			\uparrow		1	
	• · ·	ble3-1.)			11			
•	÷) f	ì		11			
		İı		4.7	\square			
		ft/f						
6. $T_1 = 0.007$		Compute Th		0.58	+	•••,••••• <u>•</u> ••	=	0.58
$P_2^{0.5}$				on CD 1 Tc	1		_	
					.		_	
Shallow con	centrated flow		Segment ID	BC				
		paved)		unpaved				
-		f		3340	\square		_	
		ft/		0.0033	\downarrow		_	
				0.93		0.00	-	
11. $T_1 = _L$		Compute T _t h	r	1.002	+		=	1.00
Channel flov 12. Cross see 13. Wetted p 14. Hydrauli 15. Channel 16. Manning	ctional flow area, a erimeter, P_w c radius, $r = a/P_w$ slope, s s's roughness coeff., n	ft/ ft/ ft/ Compute rft/f	ft t					
17. V = 1.49	$r^{2/3} s^{1/2} / n$ Com	pute V ft/s						

95 minutes

+

0.00

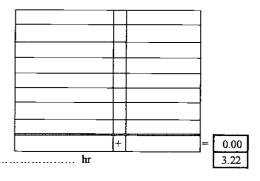
1.59

 18. Flow length, L
 ft

 19. $T_1 = L / 3600 V$ hr

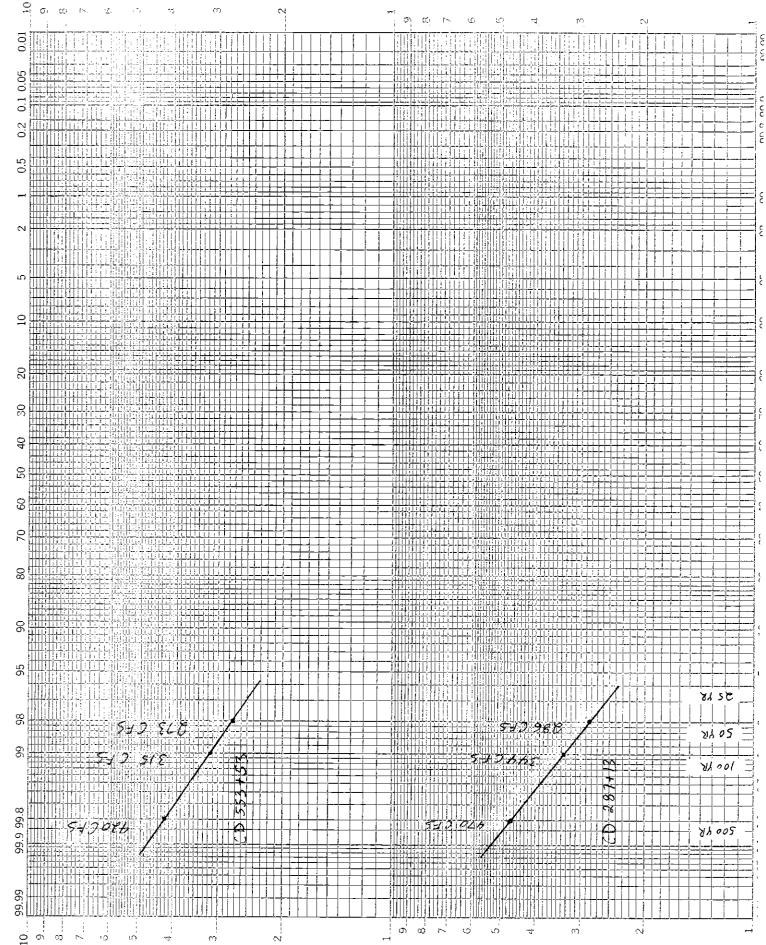
20. Watershed or subarea T_c or T_t (add T₁ in steps 6, 11, and 19) hr

10/2/200412:41 PM


WORKSHEET 3: Time of Concentration (Tc) or Travel Time (Tt)

Project: Location:	SR 25/ US 27 Lake County		By: Checked:	B.D.	Date: Date:	_	3/3/04	-	
Circle One:	Present	Developed	CD 553+53					_	
Circle One:	T _c	T_t through subarea						_	
wo	orksheet.	two segments per flow typ atic, or description of flow		or each					
Sheet flow	(Applicable to T _e	only)	Segment ID	· [AB			1	
1. Surface De	scription (table 3-1	.)			Dense Underbrush			1	
		(table3-1.)			0.80			1	
3. Flow length	h, L (total L <= 300) ft.)	ft		300				
4. Тwo-ут 24	-hr rainfall, P ₂		in		4.7				
5. Land slope	, S		ft/ft		0.0500				
6. $T_t = 0.007$		Com	pute Thr	Assume	0.86	+		=	0.86
$P_2^{0.5}$ s	0.4			·				- 14	

Shallow concentrated flow	Segment ID
7. Surface Description (paved or unpaved)	
8. Flow length, L	ft
9. Watercourse slope, s	fl/ft
10. Average velocity, V (figure 3-1)	ft/s
$11. T_t = __L$ Compute	T _t hr
3600 V	


BC				
unpaved				
10970				
0.0064	Τ			
1.29		0.00		
2.364	+		=	2.36

Channel flow	Segment ID
12. Cross sectional flow area, a	
13. Wetted perimeter, P _w	fi/ft
14. Hydraulic radius, $r = a/P_w$	Compute r ft
15. Channel slope, s	ft/ft
16. Manning's roughness coeff., n	
17. $V = 1.49 r^{2/3} s^{1/2} / n$ Compute V	ft/s
18. Flow length, L	ft
19. $T_t = L / 3600 V$	Compute T hr
20. Watershed or subarea T_c or T_t (add T_t in step	os 6, 11, and 19)

193 minutes

10/2/200412:42 PM

46 8040

PROBABILITY X 2 LOG CYCLES KEUFFEL & ESSER CO. MADE IN U.S.A.

ň

G-49

15-45

LOCATION FYDRAULIC REPORT

SR 25/US27

FROM POLK COUNTY LINE (US 192) TO NEW FLORIDA'S TURNPIKE INTERCHANGE (SR 91) STATE PROJECT NO. 11200-1501 WORK PROGRAM ITEM NO. 5112884 LAKE COUNTY

PREPARED BY:

MICHAEL H. HILL, P.E. FDOT DISTRICT 5 DRAINAGE DESIGN

AUGUST 1997

UPDATED: FEBRUARY 1999

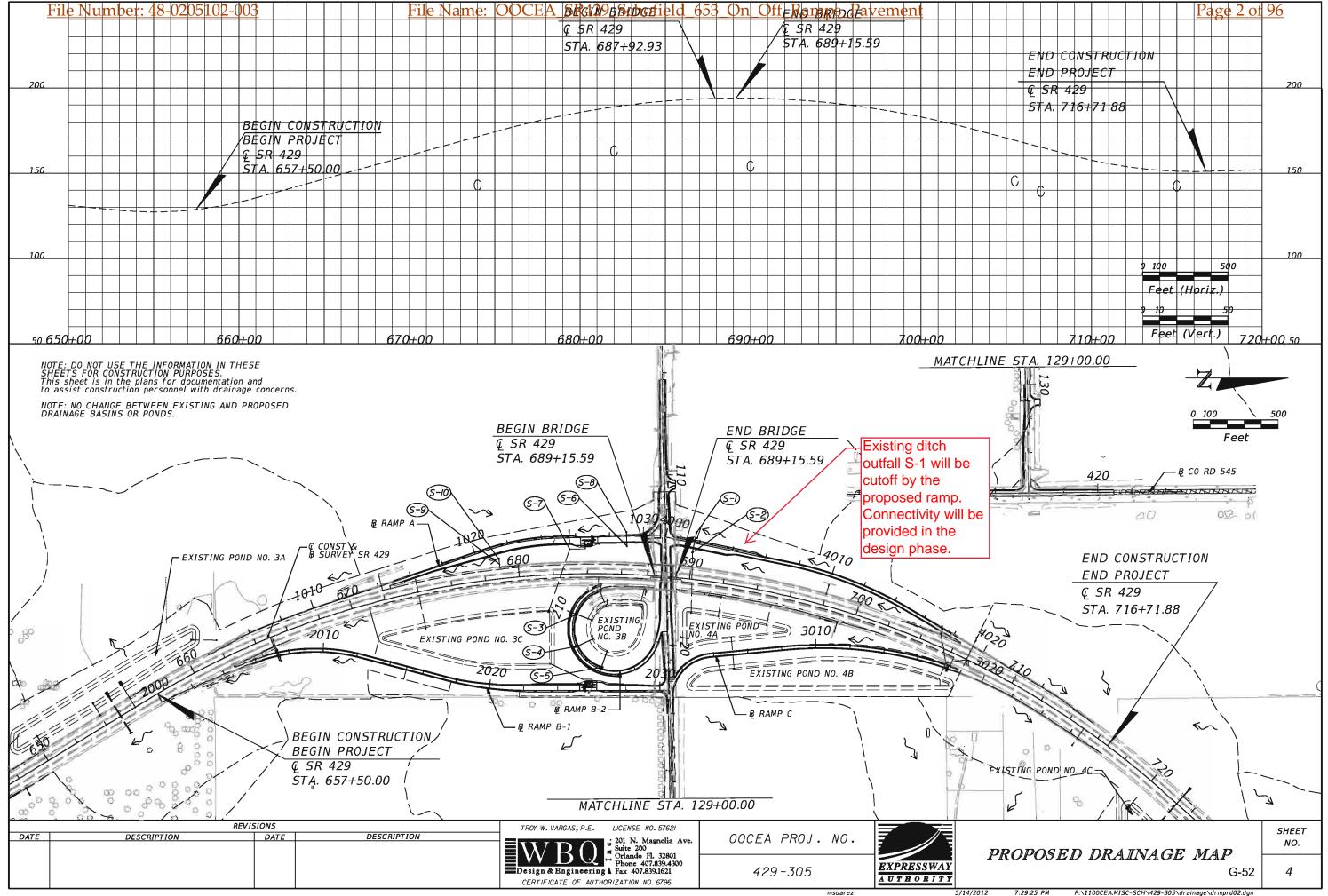
15-46 G-50

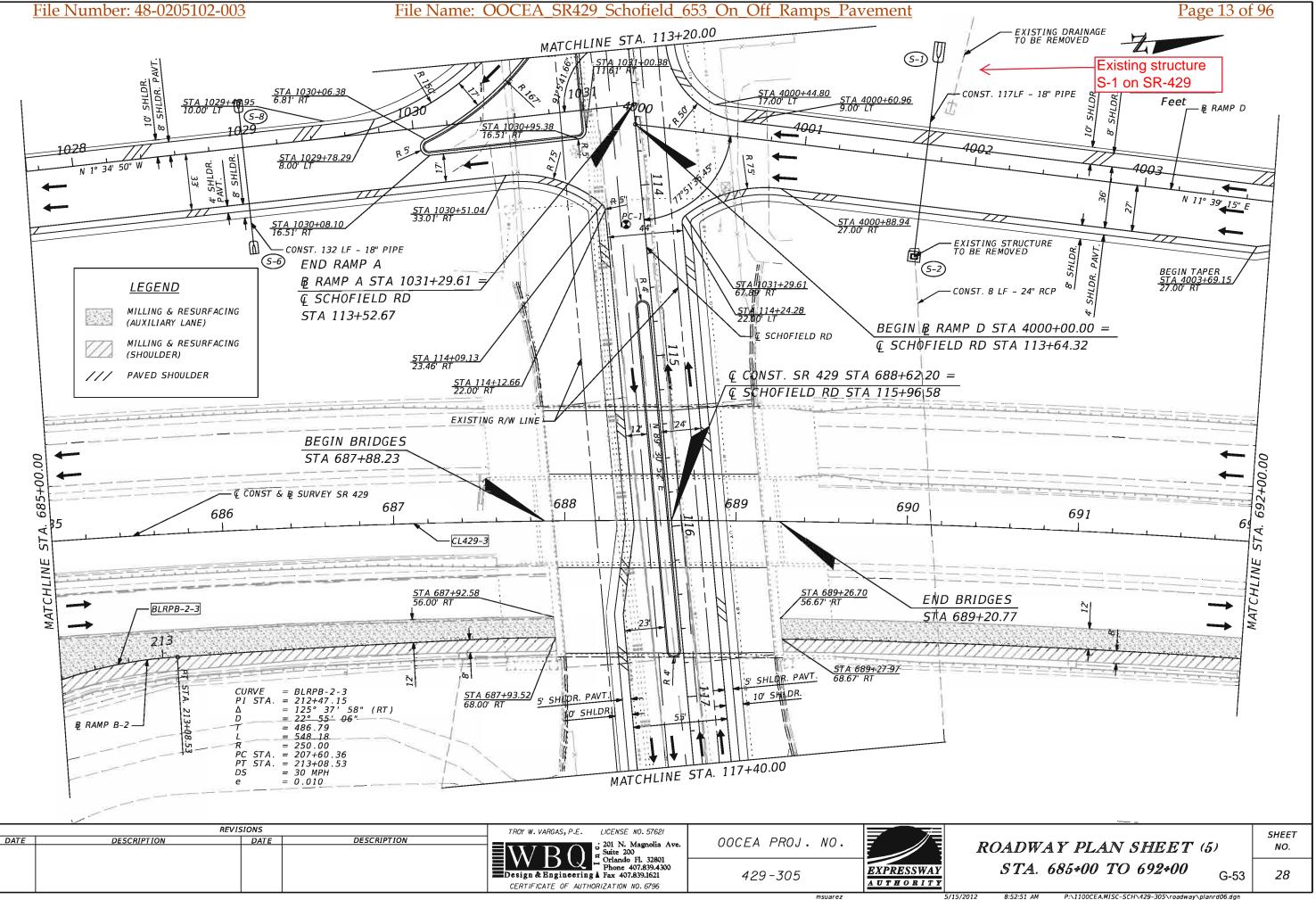
$ \begin{array}{c} \text{SINITONE}\\ \text{III.} \\ \text{IIII.} \\ \text{III.} \\ \text{III.} \\ \text{III.} \\ \text{III.} \\ \text{III.} \\ II$	All		in <i>IEngli</i> Joinging			H H H H H H H H H H					1-1-	225/0 	4K < 0 2	e	OF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			X-Durain	DESIGN	/=- <u>-</u> FL000				RTOPP	ING		C	REATES	<u>.</u> т	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_				·	- <u></u>						, U			[
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		meters	Size										FLUUD	0.2	500
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5-7	11+70								PROB,	FACO, -10+	DISCHARGE	STAGE	PACO.	7 PEO. 18.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					128.9	131.8	A			63	129.2	0.2	500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-6				137.5		/ 38.0	139.4				45	13.2.1	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		26730	30"		/33.8	35	134.3	137.3				44	135.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-/3	43+25	3'x 5' < B<		111.5	عو	119.9	123.5				126			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				/8	/37.8	20	138.0	141.3	•			25			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5-19	61700	2×2+30"	24	118.1	27	118.5	121.2							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				15	125.9	17	126.1	129.7				٤/		1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					11-4.3	292	112.4	118.3 .	CD 287.	+13	1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				36	112.1	41	112.2	115.7				52			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-4 28 Vd: -				110.1	2.3	110.7	117.7				29			I1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					107.6	63	108.0	110.9							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	117+75	ZX Z + 30+24		112.1	20	112.4	117.5			·	25		·[
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				10	111.5	/8		115,6						·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>		2×2430	7.6	111.9	30				·					I 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				33	118.2	37		122.5						· 	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		the second se		41	101.0	47	1941	104 5	' 						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51148	156+85	2x2+30"	.1.7											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		162+90	3-6'*5'	216						4.57					[
<u>61 188490 4x2 64 1145 74 115 74 115 74 78.4</u>	3	172+00	10'*5'	60					- <u>V</u>	/32					
	61	182+90	4×2.	64	167.5	74			168 -			93.	98.4 168.2		[

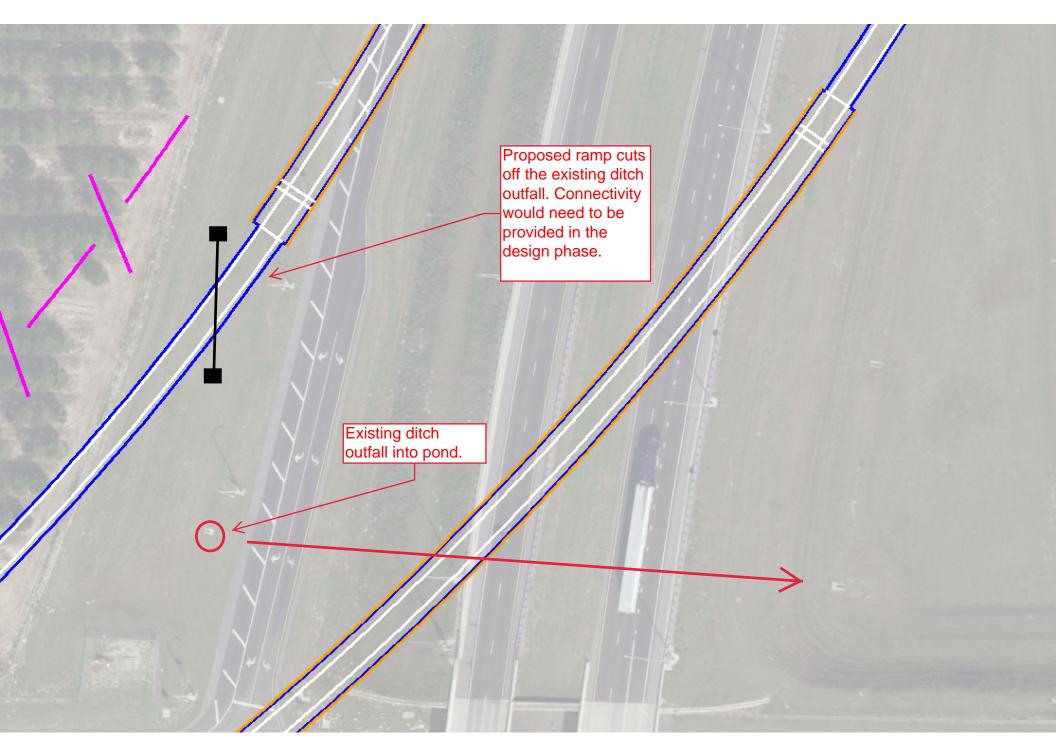
1

¥

. 1

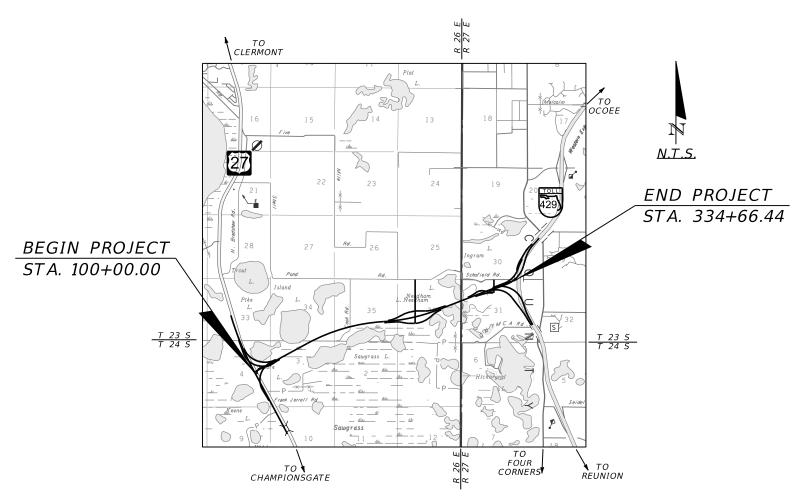

ĩ


NOTE: THE HYDRAULIC DATA IS SHOWN FOR INFORMATIONAL PURPOSES ONLY. TO INDICATE THE FLOOD DISCHARGES AND WATER SURFACE ELEVATIONS WHICH MAY BE ANTICIPATED IN ANY GIVEN YEAR. THIS DATA WAS GENERATED USING HIGHLY VARIABLE FACTORS DETERMINED BY A STUDY OF THE WATERSHED. MANY JUDGEMENTS AND ASSUMPTIONS ARE REQUIRED TO ESTABLISH THESE FACTORS. THE RESULTANT HYDRAULIC DATA IS SENSITIVE TO CHANGES. PARTICULARLY OF ANTECEDENT CONDITIONS, URBANIZATION, CHANNELIZATION, AND LAND USE, USERS OF THIS DATA ARE CAUTIONED AGAINST THE ASSUMPTION OF PRECISION WHICH CAN NOT BE ATTAINED. TH CUBIC THET PER SECOND AND STAGES ARE IN FEET, NOVD, 1929. DISCHARGES ARE


DEFINITIONS DATA ADAPTED, DESIGNEFUDOD THE FLOOD SELECTED BY F.O.D.T. TO BE FROM: StJ. Reithing / madhed & NECS MO UTILIZED TO ASSURE A STANDARD LEVEL Crowns Nell for That dayste 0 OF HYDRAULIC PERFORMANCE. PREPARED BY: 73:11 TDeese BASE FHODI m THE FLOOD HAVING A IX CHANCE OF BEING EXCEEDED IN ANY YEAR, ILOD YR, FREDUENGATEL C 9/9 Z. DVERTOPPING FLODD THE FLOOD WHERE FLOW OCCURS (A) OVER THE HIGHWAY (B) DVER A WATERSHED DIVIDE OR IC) THRU EMERGENCY RELIEF S NCTURES, EST FLOOD: THE MOST SEVERE FLOOD WHICH AN BE PREDICTED WHERE OVERTOPPING IS NOT APPROVED FOR HSF

-09206

TT


Appendix H – Proposed Typical Sections

CENTRAL FLORIDA EXPRESSWAY AUTHORITY (CFX)

TYPICAL SECTION PACKAGE

LAKE/ORANGE COUNTY CONNECTOR FEASIBILITY/PD&E STUDY FROM US 27 TO SR 429 CFX PROJECT NUMBER 599-225

LAKE COUNTY & ORANGE COUNTY

N R EDW

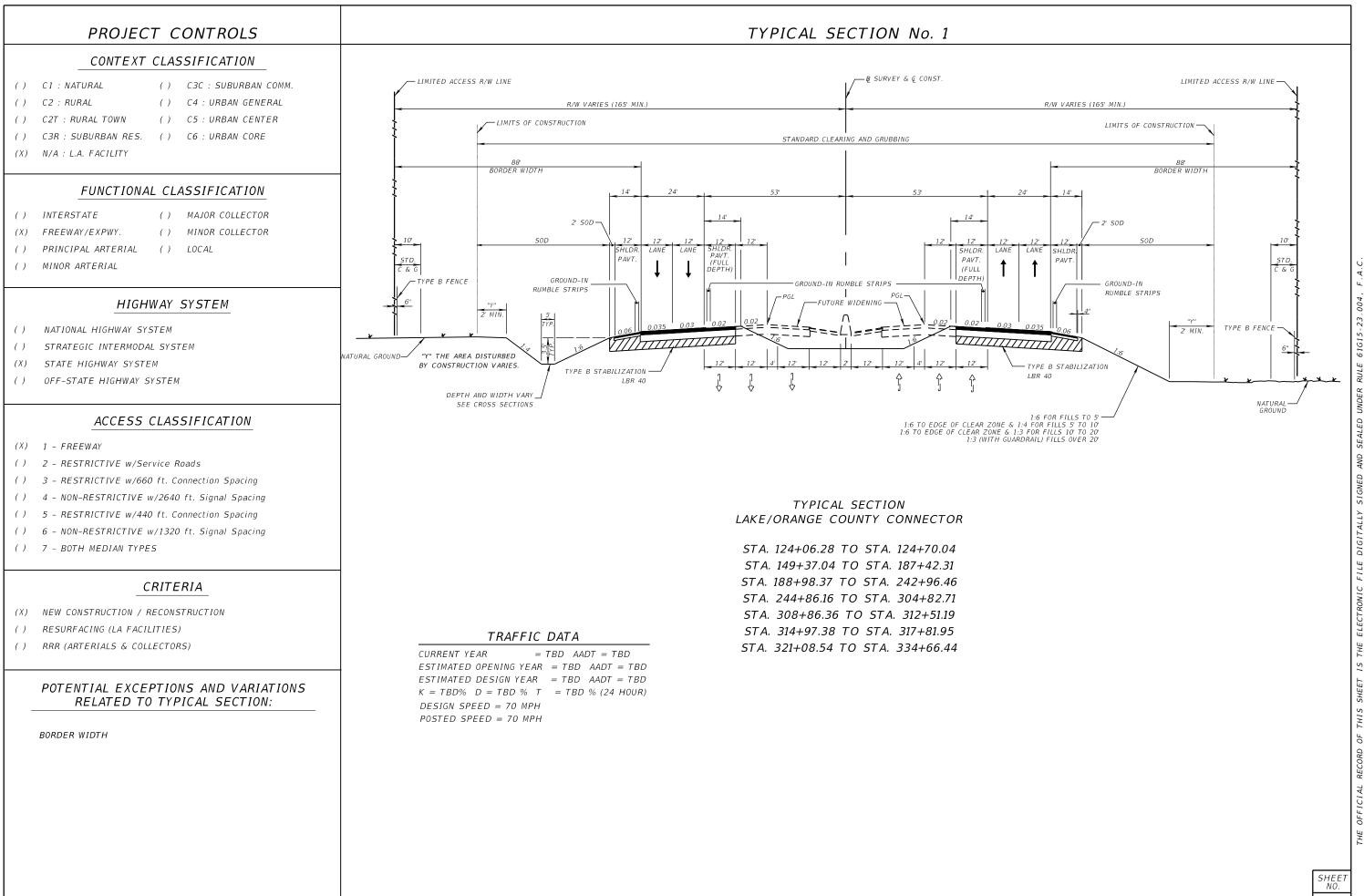
STATE OF

LORID STONAL ENG

19 20 THIS DOCUMENT HAS BEEN DIGITALLY SIGNED AND SEALED BY:

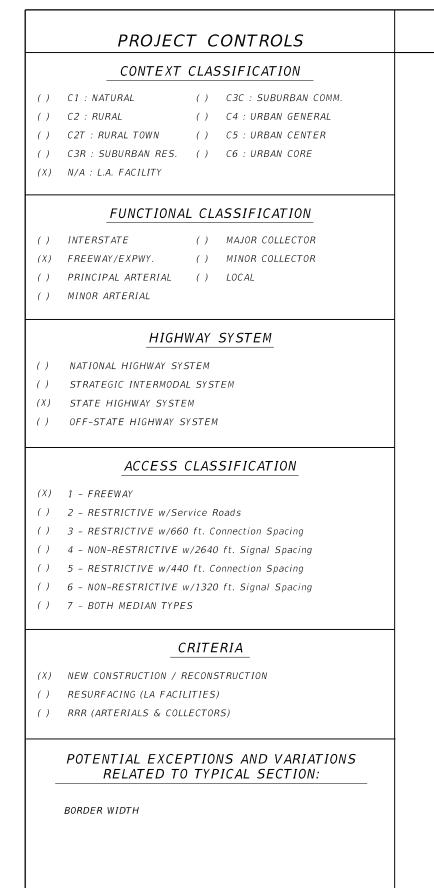
PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED. THE SIGNATURE MUST BE VERIFIED ON THE ELECTRONIC DOCUMENTS.

METRIC ENGINEERING, INC. 525 TECHNOLOGY PARKWAY, SUITE 153 LAKE MARY, FLORIDA 32746 TEL. (407) 644-1898 FAX. (407) 644-2376 CERTIFICATE OF AUTHORIZATION 2294 VENDOR NO. F-59-1685550 JAMISON R. EDWARDS, P.E. NO. 76095

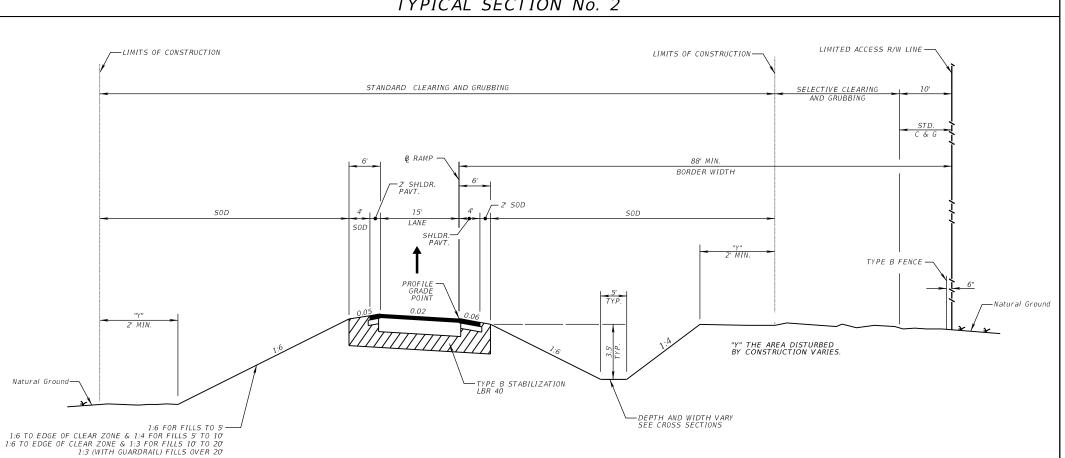

THE ABOVE NAMED PROFESSIONAL ENGINEER SHALL BE RESPONSIBLE FOR THE FOLLOWING SHEETS IN ACCORDANCE WITH RULE 61G15-23.004 F.A.C.

TYPICAL SECTION PACKAGE

SHEET NO.


SHEET DESCRIPTION					
COVER S	HEET				
TYPICAL	SECTION	NO.	1		
TYPICAL	SECTION	NO.	2		
TYPICAL	SECTION	NO.	3		
TYPICAL	SECTION	NO.	4		
TYPICAL	SECTION	NO.	5		
TYPICAL	SECTION	NO.	6		
TYPICAL	SECTION	NO.	7		
TYPICAL	SECTION	NO.	8		
TYPICAL	SECTION	NO.	9		
TYPICAL	SECTION	NO.	10		
TYPICAL	SECTION	NO.	11		
TYPICAL	SECTION	NO.	12		
TYPICAL	SECTION	NO.	13		
TYPICAL	SECTION	NO.	14		
TYPICAL	SECTION	NO.	15		
TYPICAL	SECTION	NO.	16		
TYPICAL	SECTION	NO.	17		
TYPICAL	SECTION	NO.	18		
TYPICAL	SECTION	NO.	19		

SHEET NO.

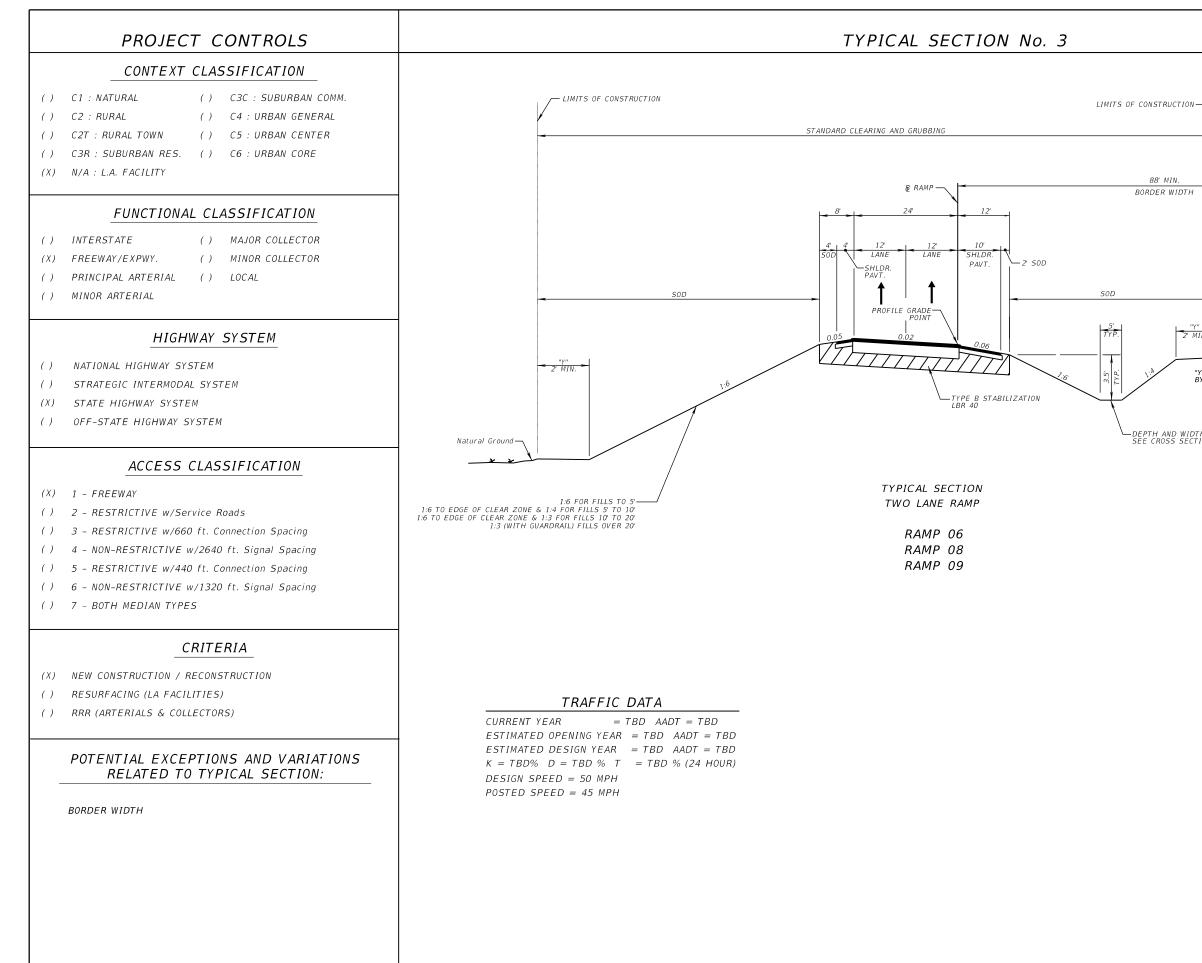


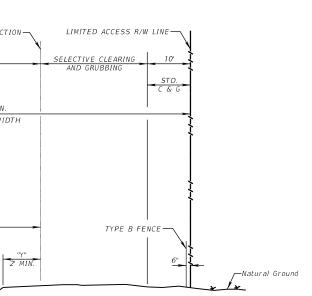
RU INDE 0 OFFICI

H- 2

TYPICAL SECTION No. 2

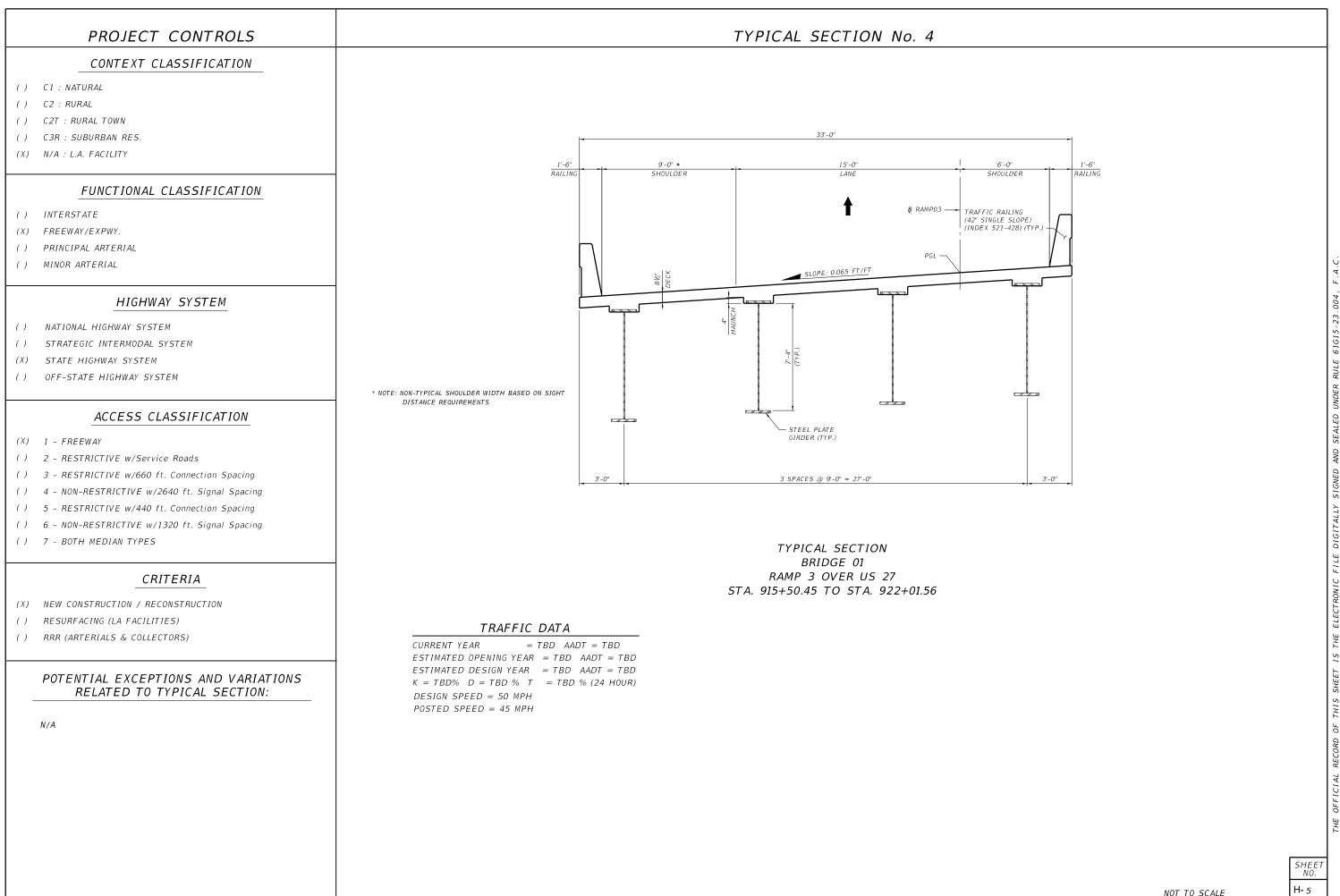
ΤΥΡΙϹΑ	L SEC	TION
SINGLE	LANE	RAMP


RAMP	01
RAMP ()2
RAMP ()3
RAMP (24
RAMP (25
RAMP (26
RAMP (07
RAMP (28
RAMP (9
RAMP 1	10
RAMP	11
RAMP 1	12
RAMP 1	13
RAMP 1	14
RAMP	15


TRAFFIC DATA

CURRENT YEAR =	TBD AADT = TBD
ESTIMATED OPENING YEAR	= TBD AADT = TBD
ESTIMATED DESIGN YEAR	= TBD AADT = TBD
K = TBD% $D = TBD%$ T	= TBD % (24 HOUR)
DESIGN SPEED = 50 MPH	
POSTED SPEED = 45 MPH	

SHEET NO. H- 3


NOT TO SCALE

-DEPTH AND WIDTH VARY SEE CROSS SECTIONS

CONTEXT CLASSIFICATION

- () C1 : NATURAL
- () C2:RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

FUNCTIONAL CLASSIFICATION

- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- NATIONAL HIGHWAY SYSTEM ()
- ()STRATEGIC INTERMODAL SYSTEM
- (X) STATE HIGHWAY SYSTEM
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION

- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES

CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

TRAFFIC DATA

CURRENT YEAR $= TBD \quad AADT = TBD$ ESTIMATED OPENING YEAR = TBD AADT = TBD ESTIMATED DESIGN YEAR = TBD AADT = TBD K = TBD% D = TBD% T = TBD% (24 HOUR) DESIGN SPEED = 50 MPH POSTED SPEED = 45 MPH

Ľ ICI OFF I ΗE

CONTEXT CLASSIFICATION

- () C1:NATURAL
- () C2 : RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

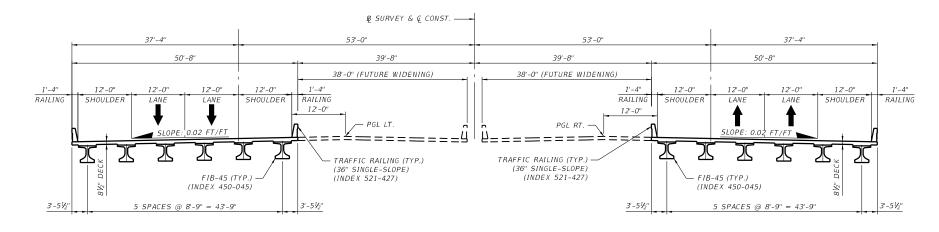
FUNCTIONAL CLASSIFICATION

- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- () NATIONAL HIGHWAY SYSTEM
- () STRATEGIC INTERMODAL SYSTEM
- (X) STATE HIGHWAY SYSTEM
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION


- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES

CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

WESTBOUND BRIDGE 3A

TYPICAL SECTION BRIDGE 3A AND 3B MAINLINE OVER EXISTING WETLANDS STA. 124+70.08 TO STA. 149+37.08

TRAFFIC DATA

CURRENT YEAR= TBDAADT= TBDESTIMATED OPENING YEAR= TBDAADT= TBDESTIMATED DESIGN YEAR= TBDAADT= TBDK = TBD%D = TBD%T= TBD% (24 HOUR)DESIGN SPEED= 70 MPHPOSTED SPEED= 70 MPH

<u>EASTBOUND</u> <u>BRIDGE_3B</u>

SHEET NO. **H-** 7

CONTEXT CLASSIFICATION

- () C1:NATURAL
- () C2 : RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

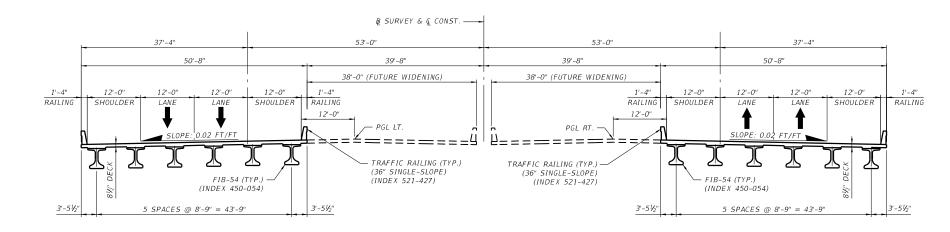
FUNCTIONAL CLASSIFICATION

- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- () NATIONAL HIGHWAY SYSTEM
- () STRATEGIC INTERMODAL SYSTEM
- (X) STATE HIGHWAY SYSTEM
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION


- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES

CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

<u>WESTBOUND</u> <u>BRIDGE 4A</u>

TYPICAL SECTION BRIDGE 4A AND 4B MAINLINE OVER COOK RD. EB BRIDGE STA. 187+43.97 TO STA. 188+70.33 WB BRIDGE STA. 187+71.40 TO STA. 188+96.81

TRAFFIC DATA

CURRENT YEAR = TBD AADT = TBD ESTIMATED OPENING YEAR = TBD AADT = TBD ESTIMATED DESIGN YEAR = TBD AADT = TBD K = TBD% D = TBD % T = TBD % (24 HOUR) DESIGN SPEED = 70 MPH POSTED SPEED = 70 MPH

TYPICAL SECTION No. 7

<u>EASTBOUND</u> <u>BRIDGE 4B</u>

61615-RULE UNDER SEALED DNP SIGNED DIGI Ú ΙS SHE THIS ОF RECORD OFFICIAL ΞH.

SHEET NO.

H- 8

CONTEXT CLASSIFICATION

- () C1:NATURAL
- () C2 : RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

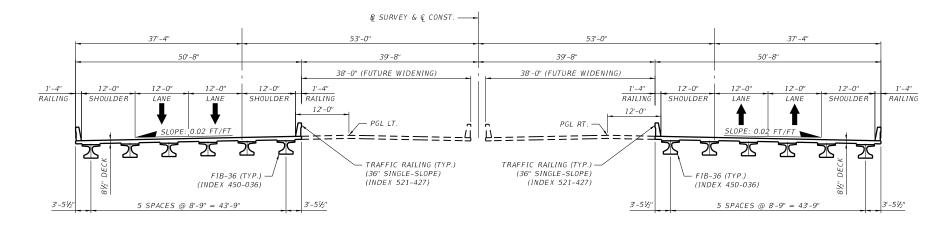
FUNCTIONAL CLASSIFICATION

- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- () NATIONAL HIGHWAY SYSTEM
- () STRATEGIC INTERMODAL SYSTEM
- (X) STATE HIGHWAY SYSTEM
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION


- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES

CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

WESTBOUND BRIDGE 5A

TYPICAL SECTION BRIDGE 5A AND 5B MAINLINE OVER CR 455 EB BRIDGE STA. 242+99.26 TO STA. 244+57.07 WB BRIDGE STA. 243+24.18 TO STA. 244+83.18

TRAFFIC DATA

CURRENT YEAR= TBDAADT = TBDESTIMATED OPENING YEAR= TBDAADT = TBDESTIMATED DESIGN YEAR= TBDAADT = TBDK = TBD%D = TBD %T= TBD % (24 HOUR)DESIGN SPEED= 70 MPHPOSTED SPEED= 70 MPH

TYPICAL SECTION No. 8

<u>EASTBOUND</u> <u>BRIDGE_5B</u>

61615-RULE UNDER SEALED DND SIGNED DIG Ú S THIS ОF RECORD OFFICIAL ΞH.

SHEET NO.

H- 9

CONTEXT CLASSIFICATION

- () C1:NATURAL
- () C2 : RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

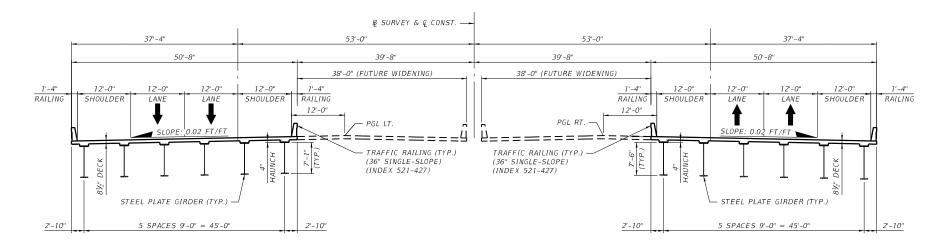
FUNCTIONAL CLASSIFICATION

- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- () NATIONAL HIGHWAY SYSTEM
- () STRATEGIC INTERMODAL SYSTEM
- (X) STATE HIGHWAY SYSTEM
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION


- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES

CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

<u>WESTBOUND</u> <u>BRIDGE 6A</u>

> TYPICAL SECTION BRIDGE 6A AND 6B MAINLINE OVER RAMP 9 EB BRIDGE STA. 306+74.88 TO STA. 308+86.36 WB BRIDGE STA. 304+82.71 TO STA. 306+85.08

TRAFFIC DATA

CURRENT YEAR = TBD AADT = TBD ESTIMATED OPENING YEAR = TBD AADT = TBD ESTIMATED DESIGN YEAR = TBD AADT = TBD K = TBD% D = TBD % T = TBD % (24 HOUR) DESIGN SPEED = 70 MPH POSTED SPEED = 70 MPH

TYPICAL SECTION No. 9

EASTBOUND BRIDGE 6B

61615-RULE UNDER SEALED DND SIGNED DIG U S THIS 9 RECORD OFFICIAL ΞH.

CONTEXT CLASSIFICATION

- () C1:NATURAL
- () C2 : RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

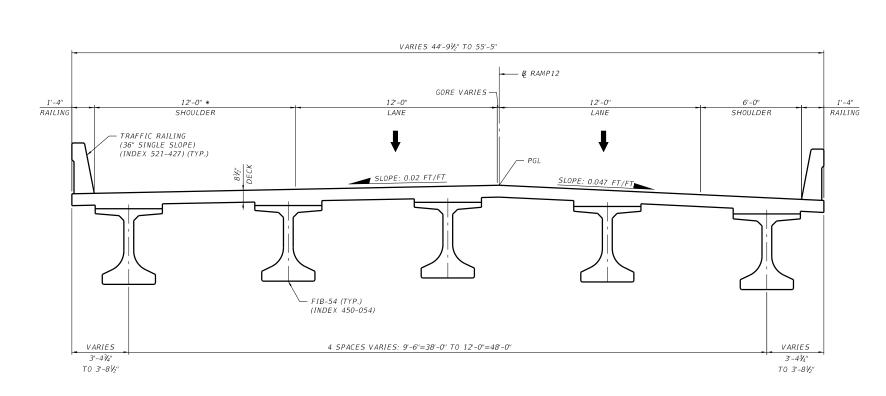
FUNCTIONAL CLASSIFICATION

- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- () NATIONAL HIGHWAY SYSTEM
- () STRATEGIC INTERMODAL SYSTEM
- (X) STATE HIGHWAY SYSTEM
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION


- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES

CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

* NOTE: NON-TYPICAL SHOULDER WIDTH BASED ON SIGHT DISTANCE REQUIREMENTS TYPICAL SECTION BRIDGE 7A MAINLINE OVER VALENCIA PARKWAY STA. 313+22.95 TO STA. 314+84.80

TRAFFIC DATA

CURRENT YEAR= TBDAADT = TBDESTIMATEDOPENINGYEAR= TBDAADT = TBDESTIMATEDDESIGNYEAR= TBDAADT = TBDK = TBD%D = TBD%T= TBD%(24 HOUR)DESIGNSPEED= 50 MPHPOSTEDSPEED= 45 MPH

SHEET NO. **H-** 11

CONTEXT CLASSIFICATION

- () C1 : NATURAL
- () C2:RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

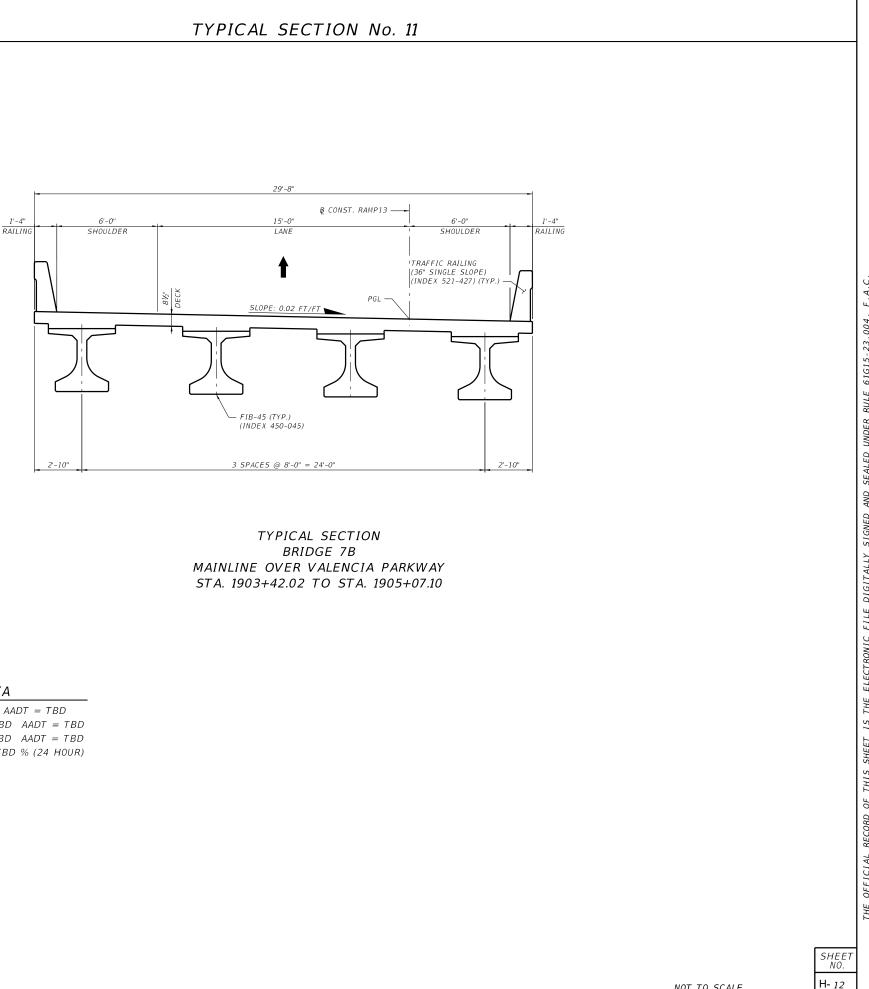
FUNCTIONAL CLASSIFICATION

- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- NATIONAL HIGHWAY SYSTEM ()
- ()STRATEGIC INTERMODAL SYSTEM
- (X) STATE HIGHWAY SYSTEM
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION


- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES

CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

TRAFFIC DATA

CURRENT YEAR $= TBD \quad AADT = TBD$ ESTIMATED OPENING YEAR = TBD AADT = TBD ESTIMATED DESIGN YEAR = TBD AADT = TBD K = TBD% D = TBD% T = TBD% (24 HOUR) DESIGN SPEED = 50 MPH POSTED SPEED = 45 MPH

CONTEXT CLASSIFICATION

- () C1:NATURAL
- () C2 : RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

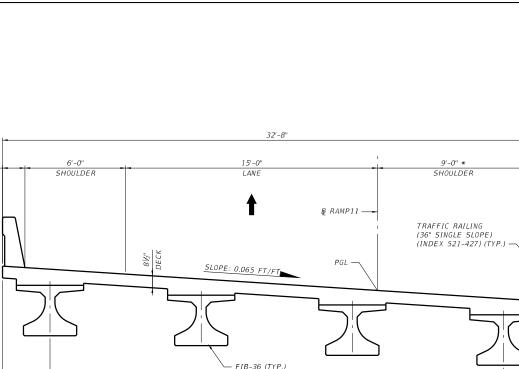
FUNCTIONAL CLASSIFICATION

- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- () NATIONAL HIGHWAY SYSTEM
- () STRATEGIC INTERMODAL SYSTEM
- (X) STATE HIGHWAY SYSTEM
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION


- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES

CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

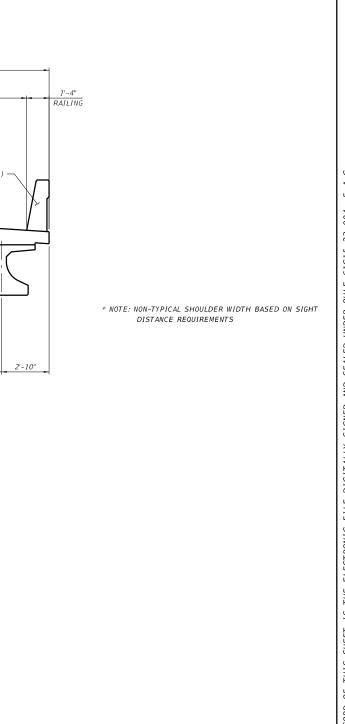
POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

(INDEX 450-036)

3 SPACES @ 9'-0" = 27'-0"

TYPICAL SECTION BRIDGE 7C MAINLINE OVER VALENCIA PARKWAY STA. 1703+27.25 TO STA. 1704+82.45


TRAFFIC DATA

1'-4" RAILING

2'-10"

CURRENT YEAR= TBDAADT= TBDESTIMATED OPENING YEAR= TBDAADT= TBDESTIMATED DESIGN YEAR= TBDAADT= TBDK= TBD%D= TBD %T= TBD %DESIGN SPEED= 50 MPHPOSTED SPEED= 45 MPH

TYPICAL SECTION No. 12

SHEE1 NO. **H-** 13

CONTEXT CLASSIFICATION

- () C1: NATURAL
- () C2:RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

FUNCTIONAL CLASSIFICATION

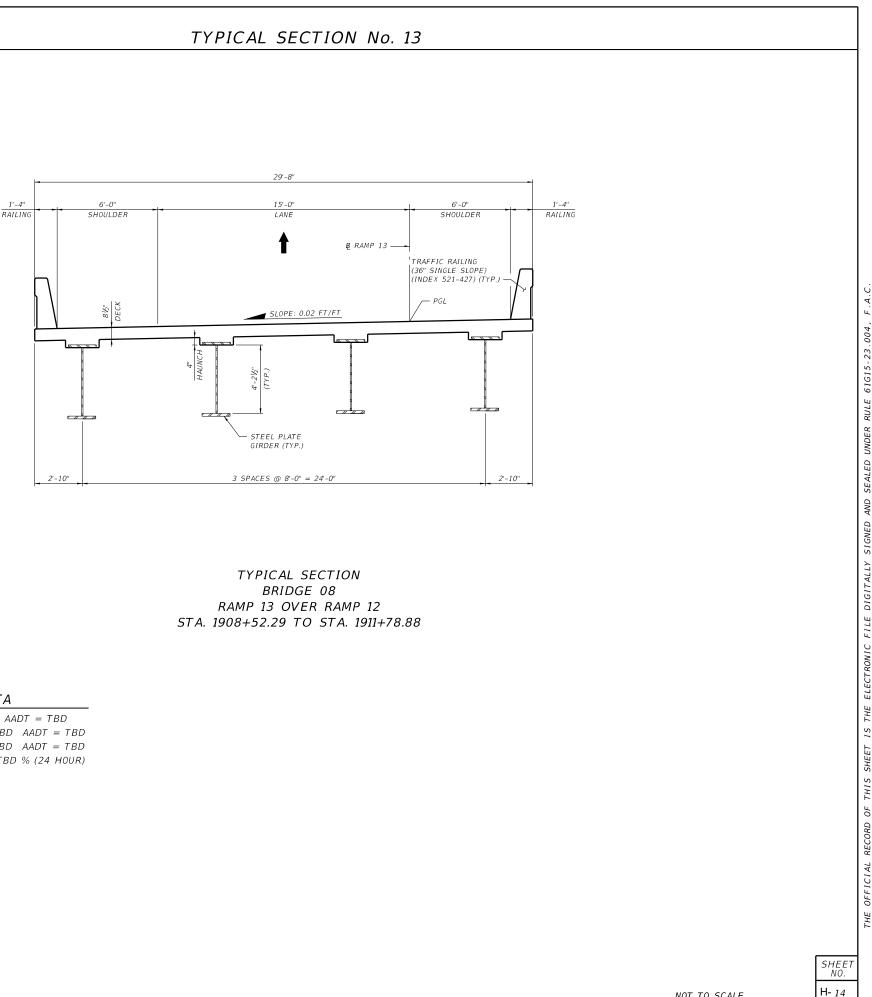
- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- NATIONAL HIGHWAY SYSTEM ()
- () STRATEGIC INTERMODAL SYSTEM
- (X) STATE HIGHWAY SYSTEM
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION

- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES


CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

TRAFFIC DATA

CURRENT YEAR $= TBD \quad AADT = TBD$ ESTIMATED OPENING YEAR = TBD AADT = TBD ESTIMATED DESIGN YEAR = TBD AADT = TBD K = TBD% D = TBD% T = TBD% (24 HOUR) DESIGN SPEED = 50 MPH POSTED SPEED = 45 MPH

CONTEXT CLASSIFICATION

- () C1: NATURAL
- () C2:RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

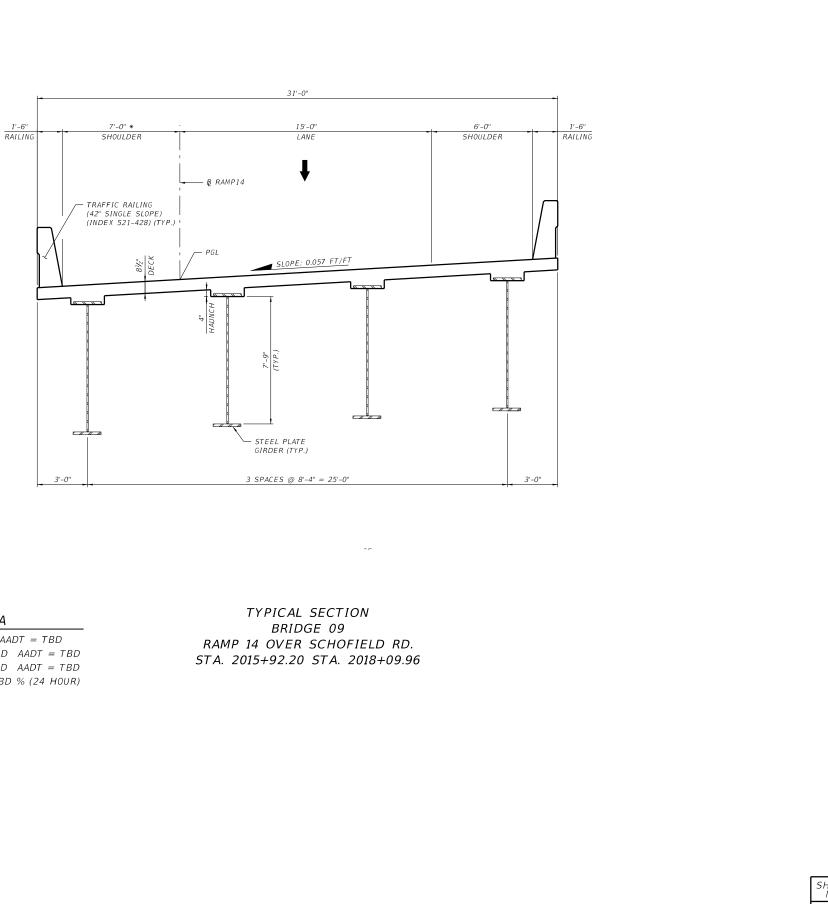
FUNCTIONAL CLASSIFICATION

- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- NATIONAL HIGHWAY SYSTEM ()
- ()STRATEGIC INTERMODAL SYSTEM
- (X) STATE HIGHWAY SYSTEM
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION


- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES

CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

TRAFFIC DATA

* NOTE: NON-TYPICAL SHOULDER WIDTH BASED ON SIGHT

DISTANCE REQUIREMENTS

CURRENT YEAR $= TBD \quad AADT = TBD$ ESTIMATED OPENING YEAR = TBD AADT = TBD ESTIMATED DESIGN YEAR = TBD AADT = TBD K = TBD% D = TBD% T = TBD% (24 HOUR) DESIGN SPEED = 50 MPH POSTED SPEED = 45 MPH

TYPICAL SECTION No. 14

6161 SUI DIG Ľ AL ICI OFF I ΗE

CONTEXT CLASSIFICATION

- () C1:NATURAL
- () C2 : RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

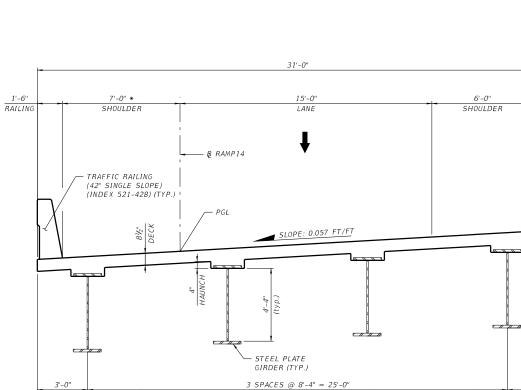
FUNCTIONAL CLASSIFICATION

- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- () NATIONAL HIGHWAY SYSTEM
- () STRATEGIC INTERMODAL SYSTEM
- (X) STATE HIGHWAY SYSTEM
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION


- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES

CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

* NOTE: NON-TYPICAL SHOULDER WIDTH BASED ON SIGHT DISTANCE REQUIREMENTS

TYPICAL SECTION BRIDGE 10 RAMP 14 OVER RAMP 15 STA. 2022+60.99 TO STA. 2025+93.37

TRAFFIC DATA

CURRENT YEAR= TBDAADT= TBDESTIMATED OPENING YEAR= TBDAADT= TBDESTIMATED DESIGN YEAR= TBDAADT= TBDK= TBD%D= TBD %T= TBD %DESIGN SPEED= 50 MPHPOSTED SPEED= 45 MPH

TYPICAL SECTION No. 15

CONTEXT CLASSIFICATION

- () C1: NATURAL
- () C2:RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

FUNCTIONAL CLASSIFICATION

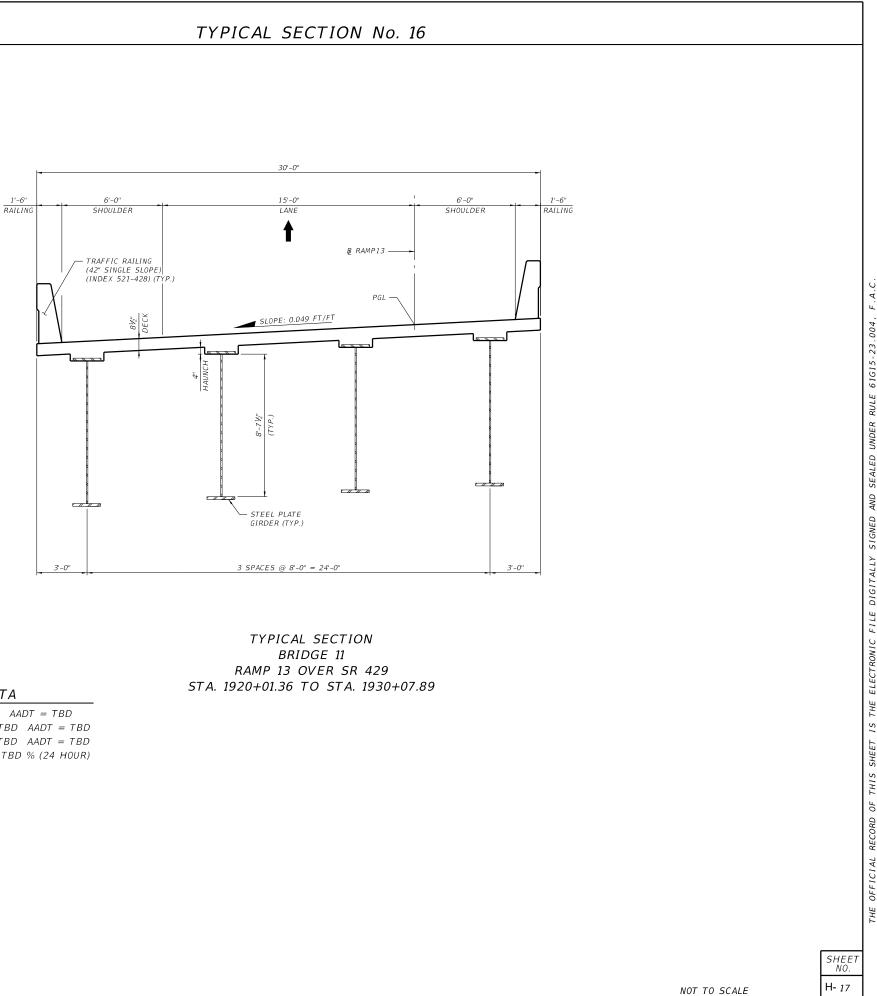
- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- NATIONAL HIGHWAY SYSTEM ()
- ()STRATEGIC INTERMODAL SYSTEM
- STATE HIGHWAY SYSTEM (X)
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION

- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES


CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

TRAFFIC DATA

CURRENT YEAR $= TBD \quad AADT = TBD$ ESTIMATED OPENING YEAR = TBD AADT = TBD ESTIMATED DESIGN YEAR = TBD AADT = TBD K = TBD% D = TBD% T = TBD% (24 HOUR) DESIGN SPEED = 50 MPH POSTED SPEED = 45 MPH

CONTEXT CLASSIFICATION

- () C1 : NATURAL
- () C2:RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

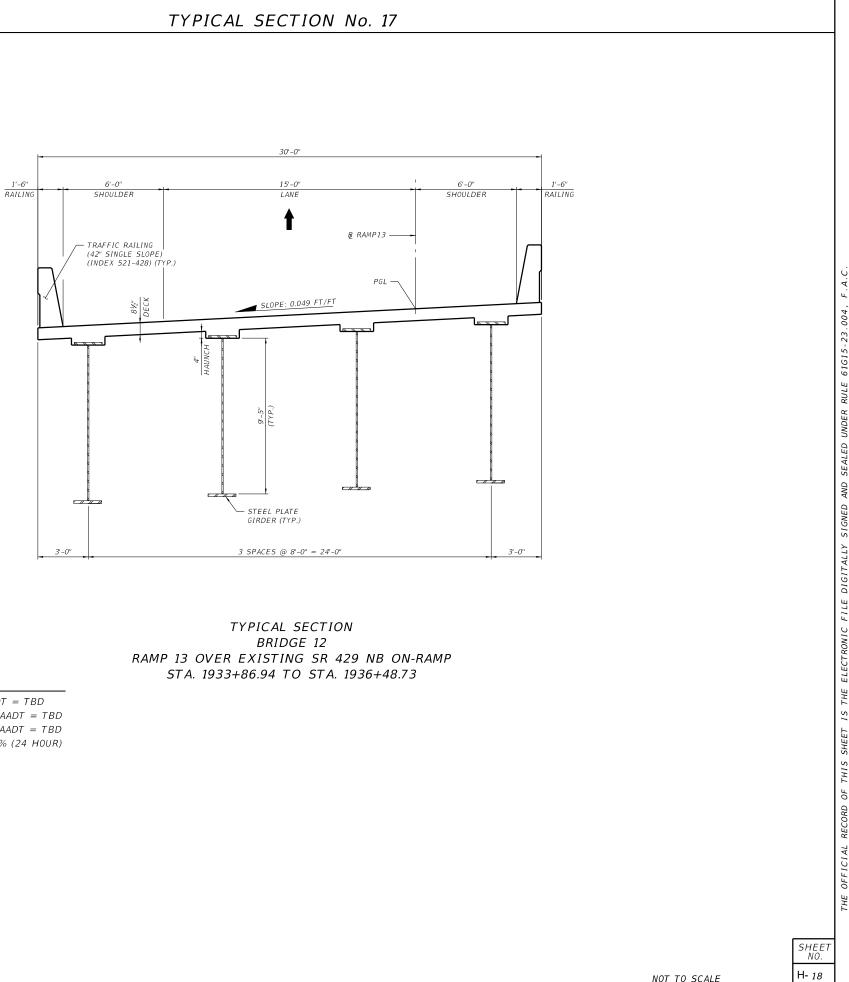
FUNCTIONAL CLASSIFICATION

- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- NATIONAL HIGHWAY SYSTEM ()
- ()STRATEGIC INTERMODAL SYSTEM
- (X) STATE HIGHWAY SYSTEM
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION


- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES

CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

TRAFFIC DATA

CURRENT YEAR $= TBD \quad AADT = TBD$ ESTIMATED OPENING YEAR = TBD AADT = TBD ESTIMATED DESIGN YEAR = TBD AADT = TBD K = TBD% D = TBD% T = TBD% (24 HOUR) DESIGN SPEED = 50 MPH POSTED SPEED = 45 MPH

CONTEXT CLASSIFICATION

- () C1: NATURAL
- () C2:RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

FUNCTIONAL CLASSIFICATION

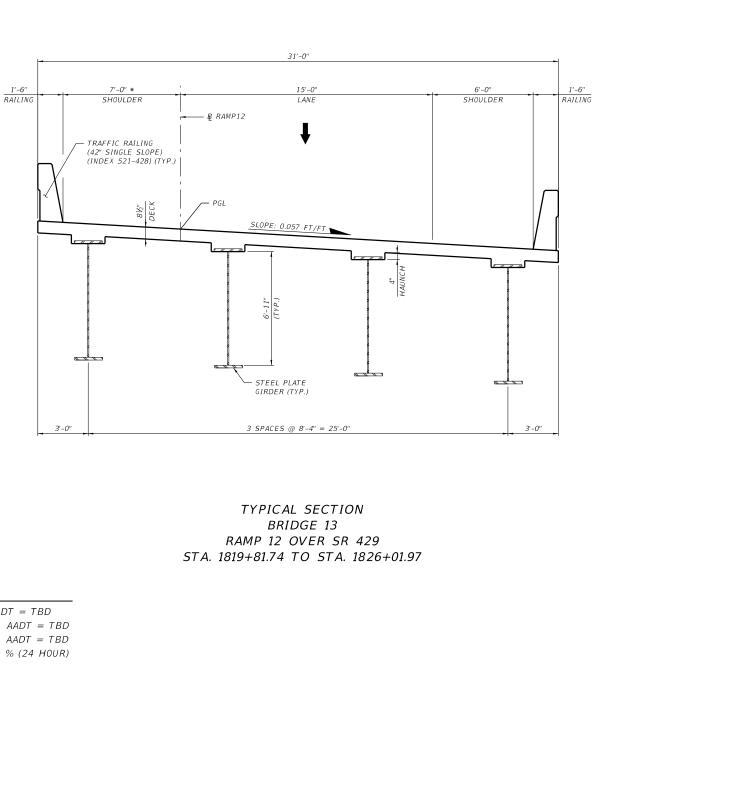
- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- NATIONAL HIGHWAY SYSTEM ()
- ()STRATEGIC INTERMODAL SYSTEM
- (X) STATE HIGHWAY SYSTEM
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION

- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES


CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

* NOTE: NON-TYPICAL SHOULDER WIDTH BASED ON SIGHT DISTANCE REQUIREMENTS

TRAFFIC DATA

CURRENT YEAR $= TBD \quad AADT = TBD$ ESTIMATED OPENING YEAR = TBD AADT = TBD ESTIMATED DESIGN YEAR = TBD AADT = TBD K = TBD% D = TBD% T = TBD% (24 HOUR) DESIGN SPEED = 50 MPH POSTED SPEED = 45 MPH

CONTEXT CLASSIFICATION

- () C1: NATURAL
- () C2:RURAL
- () C2T : RURAL TOWN
- () C3R : SUBURBAN RES.
- (X) N/A : L.A. FACILITY

FUNCTIONAL CLASSIFICATION

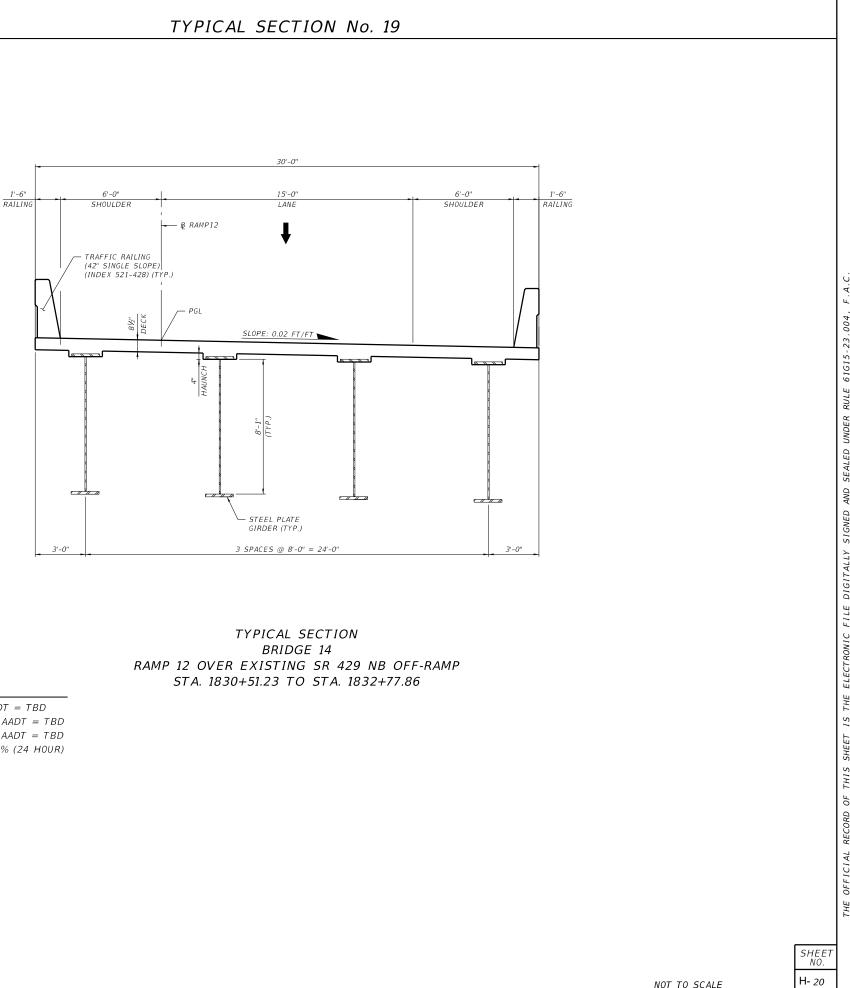
- () INTERSTATE
- (X) FREEWAY/EXPWY.
- () PRINCIPAL ARTERIAL
- () MINOR ARTERIAL

HIGHWAY SYSTEM

- NATIONAL HIGHWAY SYSTEM ()
- () STRATEGIC INTERMODAL SYSTEM
- (X) STATE HIGHWAY SYSTEM
- () OFF-STATE HIGHWAY SYSTEM

ACCESS CLASSIFICATION

- (X) 1 FREEWAY
- () 2 RESTRICTIVE w/Service Roads
- () 3 RESTRICTIVE w/660 ft. Connection Spacing
- () 4 NON-RESTRICTIVE w/2640 ft. Signal Spacing
- () 5 RESTRICTIVE w/440 ft. Connection Spacing
- () 6 NON-RESTRICTIVE w/1320 ft. Signal Spacing
- () 7 BOTH MEDIAN TYPES


CRITERIA

- (X) NEW CONSTRUCTION / RECONSTRUCTION
- () RESURFACING (LA FACILITIES)
- () RRR (ARTERIALS & COLLECTORS)

POTENTIAL EXCEPTIONS AND VARIATIONS RELATED TO TYPICAL SECTION:

N/A

TRAFFIC DATA

CURRENT YEAR $= TBD \quad AADT = TBD$ ESTIMATED OPENING YEAR = TBD AADT = TBD ESTIMATED DESIGN YEAR = TBD AADT = TBD K = TBD% D = TBD% T = TBD% (24 HOUR) DESIGN SPEED = 50 MPH POSTED SPEED = 45 MPH

Appendix I – Time of Concentration

PROJECT TITLE:	CFX Connector
LOCATION :	LAKE COUNTY
BASIN NAME:	CD-5

NUMBER: FILE:

(CONDITIONS		VARIABLE	Water Resourc	es Group	Date
Pre-Development		Tdc	Х	Computed By	LB	04/30/19
Post-Development	X	Тс	lt	Checked By	MH	
Rainfall Zone:	7	Frequency:				
SHEET FLOW	(Applicable To Tdc Only)					
			Segment ID			
,	CRIPTION(table 5-4) OUGHNESS COEFF., [n](table 5 1)		Cultivated Soils 0.060		
/	[L] (TOTAL L <= 300 ft)	(able 5-4)	ft	300		
4) HIGH ELEVATIC			ft	121.0		
5) LOW ELEVATIO			ft	117.0		
6) TWO YEAR 24-h			in	4.92		
7) LAND SLOPE, [s			ft/ft	0.013		
8) COMPUTE Tdt:	Tdt = (.007*(n*L)^0.8)/(P^	`0.5 * s^0.4)	hr	0.179		0.179
					min =	10.8
SHALLOW	CONCENTRATED FLOW					
		o // /	Segment ID			
	CRIPTION Enter 1 (Paved) of			2		
10) FLOW LENGTF 11) HIGH ELEVATI	H, [L], (STA 670+00.48 - ST	A 681+00.28)	ft	423 117.0		
12) LOW ELEVATION	· • •			108.0		
13) WATERCOURS			ft/ft	0.0213		
14) AVERAGE VEL			ft/sec	2.35		
	Tdt = L / 3600*V		hr	0.05 +	=	0.05
					min =	3.0
CHANNEL FLOW						
			Segment ID			
16) DEPTH OF FLC			ft			
17) FRONT SLOPE						
19) BACK SLOPE (21) BOTTOM WIDT	/		ft			
,	ONAL FLOW AREA, [a]		ft^2	0.00		
23) WETTED PERI	/ L 1		ft	0.00		
,	ADIUS, [r] = a / Pdw		ft	#DIV/0!		
25) FLOW LENGTH			ft			
26) HIGH ELEVATI			ft			
27) LOW ELEVATIO			ft			
28) CHANNEL SLO			ft/ft	#DIV/0!		
	ROUGHNESS COEFF., [n]		<i>c.</i> /			
	$V = (1.49*r^{2}/3 * s^{1}/2) /$	n	ft/sec		r	
ST) COMPUTE Idt:	Tdt = L / 3600*V		hr		= min =	0.0
					=	0.0
				ΤΟΤΑΙ	TIME (hr)	0.23
** Reference: FDOI	Drainage Manual Chapter 5	5 TR-55 Chapter 3	& APP-F		TIME (min)	13.7
			· · · · · · · · · · · · · · · · · · ·	IOTAL		13.7

PROJECT TITLE:	CFX Connector
LOCATION :	LAKE COUNTY
BASIN NAME:	CD-6 (Basin E)

NUMBER: FILE:

CONDITIONS CON		VARIABLE	Water Resource	es Group	Date
Pre-Development	Tdc	Х	Computed By	LB	04/30/19
Post-Development X	Тс	lt	Checked By	MH	
Rainfall Zone: 7	Frequency:				
SHEET FLOW (Applicable To Tdc Only)					
		Segment ID			
1) SURFACE DESCRIPTION (table 5-4)			Fallow		
2) MANNNING'S ROUGHNESS COEFF., [n] (table	5-4)		0.050		
3) FLOW LENGTH, [L] (TOTAL L <= 300 ft)		ft	300		
4) HIGH ELEVATION, [A] 5) LOW ELEVATION, [B]		ft ft	133.0 131.0		
6) TWO YEAR 24-hr RAINFALL , [P]		in	4.92		
7) LAND SLOPE, [s]		ft/ft	0.007		
8) COMPUTE Tdt: Tdt = $(.007*(n*L)^{0.8})/(P^{0.5}*)$	s^0.4)	hr	0.204		0.204
	<i>c c</i> , <i>i</i> , <i>j</i>		0.201	min =	12.3
SHALLOW CONCENTRATED FLOW				L	
		Segment ID			
9) SURFACE DESCRIPTION Enter 1 (Paved) or 2 (L	Jnpaved)	0	2		
10) FLOW LENGTH, [L], (STA 670+00.48 - STA 68		ft	458		
11) HIGH ELEVATION, [C]			131.0		
12) LOW ELEVATION, [D]			125.0		
13) WATERCOURSE SLOPE, [s]		ft/ft	0.0131		
14) AVERAGE VELOCITY, [V] **		ft/sec	1.85	,	
15) COMPUTE Tdt: Tdt = L / 3600*V		hr	0.07 +	=	0.07
				min =	4.1
CHANNEL FLOW		0 (15			
		Segment ID			
16) DEPTH OF FLOW 17) FRONT SLOPE (Z:1)		ft			
19) BACK SLOPE (Z:1)					
21) BOTTOM WIDTH		ft			
22) CROSS SECTIONAL FLOW AREA, [a]		ft^2	0.00		
23) WETTED PERIMETER, [Pdw]		ft	0.00		
24) HYDRAULIC RADIUS, [r] = a / Pdw		ft	#DIV/0!		
25) FLOW LENGTH, [L]		ft			
26) HIGH ELEVATION, [D]		ft			
27) LOW ELEVATION, [E]		ft			
28) CHANNEL SLOPE, [s]		ft/ft	#DIV/0!		
29) MANNNING'S ROUGHNESS COEFF., [n]		6 (
30) COMPUTE V: $V = (1.49*r^{2/3}*s^{1/2})/n$		ft/sec		r	
31) COMPUTE Tdt: Tdt = L / 3600*V		hr		=	0.0
				min =	0.0
			τοται	. TIME (hr)	0.27
** Reference: FDOT Drainage Manual Chapter 5.5, TF	P 55 Chapter 2			. TIME (III) . TIME (min)	16.4
Reference. FDOT Drainage Mariual Chapter 5.5, Tr	v-00 Griapier 3		TOTAL	IIVIE (IIIIII)	10.4

PROJECT TITLE:	CFX Connector
LOCATION :	LAKE COUNTY
BASIN NAME:	CD-6 (Basin F)

NUMBER: FILE:

CONDITIONS COMPUTE		VARIABLE	Water Resourc	es Group	Date
Pre-Development	Tdc	Х	Computed By	LB	04/30/19
Post-Development X	Tc	lt	Checked By	MH	
Rainfall Zone: 7	equency:				
SHEET FLOW (Applicable To Tdc Only)			· · · · · · · · · · · · · · · · · · ·		
		Segment ID	Fallow		
 SURFACE DESCRIPTION (table 5-4) MANNNING'S ROUGHNESS COEFF., [n] (table 5- 	4)		Fallow 0.050		
3) FLOW LENGTH, [L] (TOTAL L <= 300 ft)	-4)	ft	300		
4) HIGH ELEVATION, [A]		ft	126.0		
5) LOW ELEVATION, [B]		ft	120.5		
6) TWO YEAR 24-hr RAINFALL , [P]		in	4.92		
7) LAND SLOPE, [s]		ft/ft	0.018		
8) COMPUTE Tdt: Tdt = (.007*(n*L)^0.8)/(P^0.5 * s	^0.4)	hr	0.136		0.136
				min =	8.2
SHALLOW CONCENTRATED FLOW					
		Segment ID			
9) SURFACE DESCRIPTION Enter 1 (Paved) or 2 (Ur			2		
10) FLOW LENGTH, [L], (STA 670+00.48 - STA 681+	-00.28)	ft	608		
11) HIGH ELEVATION, [C]			120.5		
12) LOW ELEVATION, [D]		£4 /£4	103.0		
13) WATERCOURSE SLOPE, [s]14) AVERAGE VELOCITY, [V] **		ft/ft ft/sec	0.0288		
15) COMPUTE Tdt: Tdt = $L/3600*V$		hr	0.06 +	=	0.06
13) 0000 012 101 101 27 0000 0		111	0.00	min =	3.7
CHANNEL FLOW				Letter L	
		Segment ID			
16) DEPTH OF FLOW		ft			
17) FRONT SLOPE (Z:1)					
19) BACK SLOPE (Z:1)					
21) BOTTOM WIDTH		ft			
22) CROSS SECTIONAL FLOW AREA, [a]		ft^2	0.00		
23) WETTED PERIMETER, [Pdw]		ft	0.00		
24) HYDRAULIC RADIUS, [r] = a / Pdw		ft	#DIV/0!		
25) FLOW LENGTH, [L]		ft			
26) HIGH ELEVATION, [D]		ft			
27) LOW ELEVATION, [E] 28) CHANNEL SLOPE, [s]		ft ft/ft	#DIV/0!		
20) MANNNING'S ROUGHNESS COEFF., [n]		10/11	#DIV/0!		
30) COMPUTE V: $V = (1.49*r^2/3 * s^1/2) / n$		ft/sec			
31) COMPUTE Tdt: Tdt = L/3600*V		hr		=	
		•••		min =	0.0
				L	,
			TOTAL	TIME (hr)	0.20
** Reference: FDOT Drainage Manual Chapter 5.5, TR-				TIME (min)	11.9

PROJECT TITLE:	CFX Connector
LOCATION :	LAKE COUNTY
BASIN NAME:	CD-7

NUMBER: FILE:

CONDITIONS COMPUTE		D VARIABLE	Water Resource	es Group	Date	
Pre-Development		Tdc	Х	Computed By	LB	04/30/19
Post-Development	X	Т	dt	Checked By	MH	
Rainfall Zone:	7	Frequency:				
SHEET FLOW	(Applicable To Tdo Oply)					
SHEET FLOW	(Applicable To Tdc Only)		Segment ID			
1) SURFACE DESC	RIPTION (table 5-4)		eegment	Fallow		
	DUGHNESS COEFF., [n]	(table 5-4)		0.050		
	[L] (TOTAL L <= 300 ft)		ft	300		
4) HIGH ELEVATIO			ft	127.0		
5) LOW ELEVATION			ft	<u>125.5</u>		
6) TWO YEAR 24-hi 7) LAND SLOPE, [s]			in ft/ft	4.92 0.005		
8) COMPUTE Tdt:		^0 5 * s^0 4)	hr	0.229		0.229
		0.0 0 0.1)		0.220	min =	13.8
SHALLOW C	ONCENTRATED FLOW					
			Segment ID			
	RIPTION Enter 1 (Paved)			2		
	, [L], (STA 670+00.48 - ST	「A 681+00.28)	ft	855		
11) HIGH ELEVATIO 12) LOW ELEVATIO				<u>125.5</u> 115.0		
13) WATERCOURS			ft/ft	0.0123		
14) AVERAGE VEL			ft/sec	1.79		
15) COMPUTE Tdt:	Tdt = L / 3600*V		hr	0.13 +	=	0.13
	-				min =	8.0
CHANNEL FLOW			0 ID			
16) DEPTH OF FLO	AA/		Segment ID ft			
17) FRONT SLOPE			п			
19) BACK SLOPE (. ,					
21) BOTTOM WIDT	ł		ft			
,	ONAL FLOW AREA, [a]		ft^2	0.00		
23) WETTED PERIN			ft	0.00		
			ft ft	#DIV/0!		
25) FLOW LENGTH 26) HIGH ELEVATIO			ft			
27) LOW ELEVATIO			ft			
28) CHANNEL SLO			ft/ft	#DIV/0!		
,	ROUGHNESS COEFF., [n]					
/	$V = (1.49*r^2/3 * s^1/2) /$	n	ft/sec			
31) COMPUTE Tdt:	Tdt = L / 3600*V		hr		=	
					min =	0.0
				TOTAL	TIME (hr)	0.36
					· · /	21.7

PROJECT TITLE:	CFX Connector
LOCATION :	LAKE COUNTY
BASIN NAME:	CD-8 (Basin A)

NUMBER: FILE:

CONDITIONS COMPUTE		O VARIABLE	Water Resources Group		Date	
Pre-Development	Tdc	Х	Computed By	LB	04/30/19	
Post-Development X	To	dt	Checked By	MH		
Rainfall Zone: 7	Frequency:					
SHEET FLOW (Applicable To Tdc Only)		Commont ID				
1) SURFACE DESCRIPTION (table 5-4)		Segment ID	Fallow			
2) MANNNING'S ROUGHNESS COEFF., [n] (table	5-4)		0.050			
3) FLOW LENGTH, [L] (TOTAL L <= 300 ft)	0 4)	ft	300			
4) HIGH ELEVATION, [A]		ft	120.0			
5) LOW ELEVATION, [B]		ft	115.0			
6) TWO YEAR 24-hr RAINFALL , [P]		in	4.92			
7) LAND SLOPE, [s]		ft/ft	0.017			
8) COMPUTE Tdt: Tdt = (.007*(n*L)^0.8)/(P^0.5 *	s^0.4)	hr	0.142		0.142	
				min =	8.5	
SHALLOW CONCENTRATED FLOW		Sogmont ID				
9) SURFACE DESCRIPTION Enter 1 (Paved) or 2 (L	Innaved)	Segment ID	2			
10) FLOW LENGTH, [L], (STA 670+00.48 - STA 681		ft	2888			
11) HIGH ELEVATION, [C]			115.0			
12) LOW ELEVATION, [D]			102.0			
13) WATERCOURSE SLOPE, [s]		ft/ft	0.0045			
14) AVERAGE VELOCITY, [V] **		ft/sec	1.08			
15) COMPUTE Tdt: Tdt = L / 3600*V		hr	0.74 +	=	0.74	
				min =	44.5	
CHANNEL FLOW		Commont ID				
16) DEPTH OF FLOW		Segment ID ft				
17) FRONT SLOPE (Z:1)		п				
19) BACK SLOPE (Z:1)						
21) BOTTOM WIDTH		ft				
22) CROSS SECTIONAL FLOW AREA, [a]		ft^2	0.00			
23) WETTED PERIMETER, [Pdw]		ft	0.00			
24) HYDRAULIC RADIUS, [r] = a / Pdw		ft	#DIV/0!			
25) FLOW LENGTH, [L]		ft				
26) HIGH ELEVATION, [D]		ft				
27) LOW ELEVATION, [E] 28) CHANNEL SLOPE, [s]		ft ft/ft	#DIV/0!			
29) MANNNING'S ROUGHNESS COEFF., [n]		10/10	#DIV/0:			
30) COMPUTE V: $V = (1.49*r^2/3 * s^1/2) / n$		ft/sec				
31) COMPUTE Tdt: Tdt = $L/3600*V$		hr		=		
				min =	0.0	
				TIME (hr)	0.88	
** Reference: FDOT Drainage Manual Chapter 5.5, TF	R-55 Chapter 3	& APP-F	TOTAL	TIME (min)	53.0	

PROJECT TITLE:	CFX Connector
LOCATION :	LAKE COUNTY
BASIN NAME:	CD-9 (Basin B)

NUMBER: FILE:

CONDITIONS COMP	UTED VARIABLE	Water Resourc	es Group	Date	
Pre-Development Tdc	Х	Computed By	LB	04/30/19	
Post-Development X	Tdt	Checked By	MH		
Rainfall Zone: 7 Frequenc	y:				
SHEET FLOW (Applicable To Tdc Only)					
	Segment ID				
1) SURFACE DESCRIPTION (table 5-4)		Fallow			
2) MANNNING'S ROUGHNESS COEFF., [n] (table 5-4)	~	0.050			
3) FLOW LENGTH, [L] (TOTAL L <= 300 ft)	ft	300			
4) HIGH ELEVATION, [A]	ft	114.0			
5) LOW ELEVATION, [B]	ft	<u>111.5</u>			
6) TWO YEAR 24-hr RAINFALL , [P] 7) LAND SLOPE, [s]	in ft/ft	4.92 0.008			
8) COMPUTE Tdt: Tdt = $(.007*(n*L)^{0.8})/(P^{0.5}*s^{0.4})$	hr	0.187	I	0.187	
0) = 0000000000000000000000000000000000	111	0.107	min =	11.2	
SHALLOW CONCENTRATED FLOW				11.2	
CHALLOW CONCENTRALED I LOW	Segment ID				
9) SURFACE DESCRIPTION Enter 1 (Paved) or 2 (Unpaved)		2			
10) FLOW LENGTH, [L], (STA 670+00.48 - STA 681+00.28)	ft	1374			
11) HIGH ELEVATION, [C]		111.5			
12) LOW ELEVATION, [D]		104.0			
13) WATERCOURSE SLOPE, [s]	ft/ft	0.0055			
14) AVERAGE VELOCITY, [V] **	ft/sec	1.19			
15) COMPUTE Tdt: Tdt = L / 3600*V	hr	0.32 +	=	0.32	
			min =	19.2	
CHANNEL FLOW					
	Segment ID				
16) DEPTH OF FLOW	ft				
17) FRONT SLOPE (Z:1)					
19) BACK SLOPE (Z:1)	'n				
21) BOTTOM WIDTH 22) CROSS SECTIONAL FLOW AREA, [a]	ft ft^2	0.00			
23) WETTED PERIMETER, [Pdw]	ft	0.00			
24) HYDRAULIC RADIUS, $[r] = a / Pdw$	ft	#DIV/0!			
25) FLOW LENGTH, [L]	ft	#BIV/0.			
26) HIGH ELEVATION, [D]	ft				
27) LOW ELEVATION, [E]	ft				
28) CHANNEL SLOPE, [s]	ft/ft	#DIV/0!			
29) MANNNING'S ROUGHNESS COEFF., [n]					
30) COMPUTE V: V = (1.49*r^2/3 * s^1/2) / n	ft/sec				
31) COMPUTE Tdt: Tdt = L / 3600*V	hr		=		
			min =	0.0	
			. TIME (hr)	0.51	
** Reference: FDOT Drainage Manual Chapter 5.5, TR-55 Cha	pter 3 & APP-F.	TOTAL	. TIME (min)	30.4	

PROJECT TITLE: LOCATION : BASIN NAME:	CFX Connector LAKE COUNTY CD-8&9 Downstream			Ν	UMBER: FILE:	
C	ONDITIONS	COMPUTED \	ARIABLE	Water Resourc	es Group	Date
Pre-Development		Tdc	Х	Computed By	LB	04/30/19
Post-Development	X	Tdt		Checked By	MH	
Rainfall Zone:	7	Frequency:				
,	(Applicable To Tdc Only) RIPTION (table 5-4) OUGHNESS COEFF., [n] (table	e 5-4)	Segment ID	Fallow		
,	[L] (TOTAL L <= 300 ft)		ft	300		
4) HIGH ELEVATIO			ft	106.0		
5) LOW ELEVATION			ft	103.0		
6) TWO YEAR 24-hi			in	4.92		
7) LAND SLOPE, [s]			ft/ft	0.010		
8) COMPUTE Tdt:	$Tdt = (.007*(n*L)^{0.8})/(P^{0.5})$	* s^0.4)	hr	0.174		0.174
		_			min =	10.4
 10) FLOW LENGTH 11) HIGH ELEVATIO 12) LOW ELEVATIO 13) WATERCOURS 14) AVERAGE VELO 15) COMPUTE Tdt: CHANNEL FLOW 16) DEPTH OF FLO 17) FRONT SLOPE	DN, [D] E SLOPE, [s] DCITY, [V] ** Tdt = L / 3600*V		Segment ID ft ft/ft ft/sec hr Segment ID ft	2 1550 103.0 102.0 0.0006 0.41 1.05 +	= [1.05 63.0
19) BACK SLOPE (21) BOTTOM WIDT	,		ft			
,	ONAL FLOW AREA, [a]		ft^2	0.00		
23) WETTED PERIN	, L 1		ft	0.00		
24) HYDRAULIC RA			ft	#DIV/0!		
25) FLOW LENGTH	, [L]		ft			
26) HIGH ELEVATIO	DN, [D]		ft			
27) LOW ELEVATIC	N, [E]		ft			
28) CHANNEL SLO			ft/ft	#DIV/0!		
,	ROUGHNESS COEFF., [n]		ft/aaa			
,	$V = (1.49*r^2/3 * s^1/2) / n$		ft/sec		r	
31) COMPUTE Tdt:	$IUI = L / 3000^{\circ}V$		hr		= min =	0.0
						0.0

** Reference: FDOT Drainage Manual Chapter 5.5, TR-55 Chapter 3 & APP-F.

TOTAL TIME (hr)

TOTAL TIME (min)

1.22

73.5

PROJECT TITLE:	CFX Connector
LOCATION :	LAKE COUNTY
BASIN NAME:	CD-10 (Basin C1)

NUMBER: FILE:

CONDITIONS	COMPUTED VARIABLE		Water Resources Group		Date	
Pre-Development	Tdc	Х	Computed By	LB	04/30/19	
Post-Development X	T	dt	Checked By	MH		
Rainfall Zone: 7	Frequency:					
SHEET FLOW (Applicable To Tdc Only)						
		Segment ID				
1) SURFACE DESCRIPTION (table 5-4)			Woods, light under	brush		
2) MANNNING'S ROUGHNESS COEFF., [n] (table	e 5-4)		0.400			
3) FLOW LENGTH, [L] (TOTAL L <= 300 ft)		ft	300			
4) HIGH ELEVATION, [A]		ft ft	150.0			
5) LOW ELEVATION, [B] 6) TWO YEAR 24-hr RAINFALL,[P]		in	137.5 4.92			
7) LAND SLOPE, [s]		ft/ft	0.042			
8) COMPUTE Tdt: Tdt = $(.007*(n*L)^{0.8})/(P^{0.5})$	* s^0 4)	hr	0.518	I	0.518	
	0 0.47		0.010	min =	31.1	
SHALLOW CONCENTRATED FLOW					0	
		Segment ID				
9) SURFACE DESCRIPTION Enter 1 (Paved) or 2 (Unpaved)	ooginontib	2			
10) FLOW LENGTH, [L], (STA 670+00.48 - STA 68		ft	896			
11) HIGH ELEVATION, [C]			137.5			
12) LOW ELEVATION, [D]			118.0			
13) WATERCOURSE SLOPE, [s]		ft/ft	0.0218			
14) AVERAGE VELOCITY, [V] **		ft/sec	2.38			
15) COMPUTE Tdt: Tdt = L / 3600*V		hr	0.10 +	=	0.10	
				min =	6.3	
CHANNEL FLOW						
		Segment ID				
16) DEPTH OF FLOW		ft				
17) FRONT SLOPE (Z:1)						
19) BACK SLOPE (Z:1)		4				
21) BOTTOM WIDTH 22) CROSS SECTIONAL FLOW AREA, [a]		ft ft^2	0.00			
23) WETTED PERIMETER, [Pdw]		ft	0.00			
24) HYDRAULIC RADIUS, [r] = a / Pdw		ft	#DIV/0!			
25) FLOW LENGTH. [L]		ft	#DIV/0:			
26) HIGH ELEVATION, [D]		ft				
27) LOW ELEVATION, [E]		ft				
28) CHANNEL SLOPE, [s]		ft/ft	#DIV/0!			
29) MANNNING'S ROUGHNESS COEFF., [n]						
30) COMPUTE V: V = (1.49*r^2/3 * s^1/2) / n		ft/sec				
31) COMPUTE Tdt: Tdt = L / 3600*V		hr		=		
				min =	0.0	
					0.00	
				TIME (hr)	0.62	
** Reference: FDOT Drainage Manual Chapter 5.5, T	R-55 Chapter 3	3 & APP-F.	TOTAL	TIME (min)	37.4	

PROJECT TITLE:CFX ConnectorLOCATION :LAKE COUNTYBASIN NAME:Basin C2

NUMBER: FILE:

C	ONDITIONS	COMPUTED) VARIABLE	Water Resource	es Group	Date
Pre-Development		Tdc	Х	Computed By	LB	04/30/1
Post-Development	X	To	lt	Checked By	MH	
Rainfall Zone:	7	Frequency:				
SHEET FLOW	(Applicable To Tdc Only)					
			Segment ID	faller -		
	RIPTION(table 5-4) DUGHNESS COEFF., [n])	(table 5 1)		fallow 0.050		
,	[L] (TOTAL L <= 300 ft)	(lable 5-4)	ft	300		
 HIGH ELEVATION 			ft	116.0		
5) LOW ELEVATION	· • •		ft	108.0		
6) TWO YEAR 24-hr	· • •		in	4.92		
) LAND SLOPE, [s]			ft/ft	0.027		
COMPUTE Tdt:	$Tdt = (.007*(n*L)^{0.8})/(P^{-1})$	^0.5 * s^0.4)	hr	0.117		0.117
					min =	7.(
SHALLOW C	ONCENTRATED FLOW					
			Segment ID			
	RIPTION Enter 1 (Paved)			2		
,	[L], (STA 670+00.48 - ST	A 681+00.28)	ft	477		
11) HIGH ELEVATIC	· • •			109.0		
12) LOW ELEVATIO	/ L J		ft/ft	<u> </u>		
13) WATERCOURSE 14) AVERAGE VELC			ft/sec	0.74		
15) COMPUTE Tdt:			hr	0.18 +	=	0.18
				0.10	min =	10.8
CHANNEL FLOW					L	-
	3		Segment ID			
16) DEPTH OF FLO	N		ft			
17) FRONT SLOPE	(Z:1)					
19) BACK SLOPE (2	<u>Z:1)</u>					
21) BOTTOM WIDTH			ft			
	NAL FLOW AREA, [a]		ft^2	0.00		
23) WETTED PERIM			ft	0.00		
24) HYDRAULIC RA			ft	#DIV/0!		
25) FLOW LENGTH,			ft			
26) HIGH ELEVATIC			ft			
27) LOW ELEVATIO 28) CHANNEL SLOF			ft ft/ft	#DIV/0!		
	OUGHNESS COEFF., [n]		11/11	#DIV/0!		
	$V = (1.49 r^2/3 r^3/3 r^3/2)/$	n	ft/sec			
31) COMPUTE Tdt:			hr		=	
					min =	0.0
					····· L	
				TOTAL	. TIME (hr)	0.3
	Drainage Manual Chapter 5				. TIME (min)	17.