FINAL PRELIMINARY ENGINEERING REPORT

FEASIBILITY / PROJECT DEVELOPMENT AND ENVIRONMENT STUDY Lake / Orange County Connector (US 27 to SR 429) Lake and Orange Counties, Florida

CFX Project Number: 599-225

Prepared for

CENTRAL FLORIDA EXPRESSWAY AUTHORITY

Prepared by Metric Engineering, Inc. 525 Technology Park, Suite 153 Lake Mary, FL 32746

SEPTEMBER 2019

PROFESSIONAL ENGINEER CERTIFICATE

I hereby certify that I am a registered professional engineer in the State of Florida practicing with Metric Engineering, Inc., authorized under the provisions of Section 471.023, Florida Statutes, to offer engineering services to the public through a Professional Engineer, duly licensed under Chapter 471, Florida Statutes, Certificate of Authorization (CA) No. 2294, by the State of Florida Department of Professional Regulation, Board of Professional Engineers, and that I have prepared or approved the evaluation, findings, opinions, conclusions, or technical advice hereby reported for:

CFX Project Number	599-225
Project:	Lake/Orange Connector (US 27 to SR 429) Project
	Development and Environment Study
County:	Lake and Orange Counties
CFX Project Manager:	Glenn Pressimone, PE

I acknowledge that the procedures and references used to develop the results contained in this report are standard to the professional practice of transportation engineering as applied through professional judgment and experience.

No. 77951 STATE OF SIGNATURE: Gabriela Garo Name: P.E. No .: 7951 Metric Engineering, Inc. Firm: 13940 SW 136 Street Suite 200 Miami, FL 33186 Date: 91 19/19

The purpose of the Lake/Orange County Connector Feasibility/Project Development and Environment (PD&E) Study is to develop a proposed improvement strategy that is technically sound, environmentally sensitive and publicly acceptable. Emphasis has been placed on the development, evaluation and documentation of detailed engineering and environmental studies including data collection, conceptual design, environmental analyses, project documentation and the preparation of a Preliminary Engineering Report.

The Central Florida Expressway Authority (CFX) is presently evaluating the feasibility to provide a Lake/Orange County Connector, a strategic transportation investment aimed at supporting existing and future growth in south Lake and west Orange Counties. The primary objectives of this transportation improvement project are to expand regional

system linkage and connectivity in Lake and counties: Orange enhance mobility between US 27 and SR 429; and accommodate the expected increase traffic in due to population and employment growth within the study area, while being consistent with accepted local and regional plans. As such, the proposed improvements include the construction of a limited-access facility

CENTRAL FLORIDA

AUTHORITY

Figure E1: Study Area

Preliminary Engineering Report

that provides a new east-west connection from US 27 in south Lake County to SR 429 in west Orange County.

Summary of Needs

The overall study was initiated with a detailed, comprehensive analysis of existing substandard conditions. In general terms, some of the most critical existing deficiencies include:

- Linkage Deficiencies: At the present time, the east-west connectivity within the study area is deficient with Schofield Road, an unpaved 20-foot wide rural facility, providing the only connection between US 27 on the west and SR 429 on the east. A new limited-access, direct connection expressway facility would not only provide the much-needed connectivity in the area but would also significantly improve regional mobility and travel time.
- Anticipated Transportation Demand: An origin and destination (OD) study conducted by CDM Smith in 2017 for CFX revealed that much of the potential traffic for a new toll road would come from planned developments. Two of the main areas of development generating additional population are the Wellness Way Area Plan (WWAP) in south Lake County and the Horizon West Special Planning Area (HWSPA) in southwestern Orange County. The WWAP includes more than 16,000 acres. Horizon West is a growing community of several villages occupying more than 20,000 acres and projected to house over 60,000 residents when completed. In the year 2045, there is a potential for 34,000 daily trips traveling between US 27 and SR 429 in the vicinity of Schofield Road. With the proposed project as a tolled expressway, approximately 19,000 daily trips would be diverted from local roadways.
- Economic Viability/Job Creation: The proposed facility is needed to further support the economic viability of the WWAP. This development has been recognized for many years as having significant potential for economic growth in southeast Lake County. It is projected to be an economic engine for job creation

in the region and is envisioned to strengthen its connectivity with other regional economic hubs.

- Support Intermodal Opportunities: The Horizon West Town Center is an intermodal and freight staging facility potentially providing access to trucks, rails, airports and/or ports. Its presence enhances the integration and connectivity of the multimodal transportation system. The proposed connector would link this freight staging facility with two major Strategic Intermodal System (SIS) highways (US 27 and SR 429) and thus connect Lake County via a network of limited-access facilities to the Orlando International Airport and Port Canaveral.
- Evacuation and Emergency Services: The East Central Florida Region has been identified by the National Oceanic and Atmospheric Administration (NOAA) as a high hurricane-vulnerable area within the United States and thus requires sufficient and efficient evacuation routes. There are no existing designated eastwest evacuation routes within the immediate project area. Only SR 50, approximately 7 miles to the north, and US 192 (SR 530), approximately 7 miles to the south, provide effective east-west evacuation connection to important northsouth SIS routes in the area (US 27 and SR 429).
- **Planning Consistency:** Planning consistency of the proposed project is documented in various local comprehensive plans (see **Table E1**).

Agency	Remarks				
Central Florida Expressway Authority (CFX)	Included in the 2040 Master Plan and the Five-Year Work Plan (2019-2023)				
Lake-Sumter MPO	Identified the proposed project in the 2040 LRTP Needs Plan				
West Orange/South Lake Transportation and Economic Development Task Force	Identified a connection between US 27 to Orange County in its Transportation Plan				
MetroPlan Orlando	Identified in its Technical Report 3: "Plan Development and Cost Feasible Projects"				

Table E1: Local Planning Consistency

Summary of Recommendations

Initially, the study area was divided into three segments that reflect predominant land uses, natural resources, Figure E2: Segmental Breakdown

facilitate to the etc. analysis. The segmental breakdown approach ensures that the corridor generated alternatives are more responsive to the needs of each segment rather than only the to generalized project needs. The figure to the right illustrates the study segments and provides a description of each. Each segment has unique characteristics as well as

differences in environmental, engineering and socio-economic features.

In general, all alternatives were the result of combinations of the three project segments as well as various interchange configurations at each access point. The "No Build" alternative assumes the retainment of existing conditions and was maintained as a viable option providing an effective baseline condition by which other project alternatives were compared.

After a comprehensive evaluation process, one alternative was selected as being the most effective option. This alternative is illustrated on **Figure E3**.

Figure E3: Preferred Alternative

Lake/Orange County Connector (US 27 to SR 429) Feasibility/PD&E Study

v

The typical section for the preferred alternative is depicted below (see **Figure E4**). A brief description of the preferred alternative follows:

CENTRAL FLORIDA

AUTHORITY

<u>Segment 1 (from US 27 [Begin Project] to Cook Road)</u>: Within Segment 1, the preferred alternative features a four-lane rural expressway typical section, with 330 feet of right-of-way, 12-foot travel lanes, 12-foot outside shoulders, an 88-foot divided median and a 94-foot border width. The section will feature grade separations in order to provide access to local facilities. The western interchange at US 27 provides direct connect ramps with free flow access to/from US 27. In order to avoid impacts to the abutting Lake Louisa State Park, a portion of US 27 will be slightly shifted to the east. Within this segment, the preferred alternative generally follows a northeast direction, thus avoiding impacts to Lakes Adain and Sawgrass.

<u>Segment 2 (from Cook Road to the Lake/Orange County Line)</u>: Within this segment, the preferred alternative continues with the same typical section previously described under Segment 1. The alignment generally shifts slightly southward just east of Cook Road in order to minimize impacts to the CEMEX Four Corners Sand Mine property. A full diamond interchange will be provided at the proposed CR 455 Extension facility to provide local access.

<u>Segment 3 (from the Lake/Orange County Line to the SR 429 and Schofield Road</u> <u>interchange [End Project])</u>: Within Segment 3, the preferred alternative continues the same typical section described under Segment 1. A partial interchange at the proposed Valencia Parkway will provide access to and from the west. At the SR 429 with Schofield Road interchange, direct connect ramps will provide access to/from both Northbound and Southbound SR 429

Commitments

CFX commitments are listed below.

- To minimize adverse impacts to the eastern indigo snake, during construction, CFX will adhere to the USFWS Standard Protection Measures for the Eastern Indigo Snake.
- CFX will mitigate for any unavoidable impacts to wood stork Suitable Foraging Habitat (SFH) at an approved mitigation bank and in accordance with the USFWS Wood Stork Effect Determination Key (U.S. Army Corps of Engineers and USFWS 2008).
- A preconstruction gopher tortoise burrow survey and any resultant permitting will be conducted in accordance with Florida Fish and Wildlife Conservation Commission (FWC) protocols.
- CFX will mitigate for unavoidable impact to wetlands consistent with state and Federal standards.
- CFX will continue to coordinate with stakeholders and impacted property owners during final design regarding pond locations and potential design modifications.
- CFX will continue to coordinate with Lake and Orange Counties regarding final location and design of the future CR 455 and Valencia Parkway.
- CFX will coordinate with the Florida Department of Transportation (FDOT) in final design regarding joint use ponds for impacts to the existing FDOT stormwater ponds located along US 27 in the project study area.
- CFX will maintain the proposed alignment as south as possible to minimize impacts to the future mining operations of the CEMEX Four Corners Sand Mine.

• CFX will maintain previous access agreements for private property owners that were put in place when the SR 429 was constructed.

TABLE OF CONTENTS

E	XECUT	IVE SUMMARY	I
1	IN	TRODUCTION	1-1
	1.1	Project Description/Background	1-1
	1.2	Need	1-4
	1.2.1	System Connectivity/Linkage	1-4
	1.2.2	2 Anticipated Transportation Demand	1-5
	1.2.3	3 Consistency with Local and Regional Plans	1-7
	1.2.4	Economic Viability and Job Creation	1-8
	1.2.5	Support Intermodal Opportunities	
	1.2.0	Other Drainate in the Study Area	
n	1.3		
2		Identification of Draiget Segments	Z-I
	2.1	Identification of Project Segments Corridors	
	2.2	Initial Screening/Purpose and Need Compliance	2-2 2_6
	2.5	Preliminary Alternative Corridor Evaluation	2-0 2-8
	2.5	Pre-Final Alternative Corridor Evaluation	2-15
	2.6	Final Alternative Corridor Evaluation	
	2.7	Corridor Conclusions	2-22
3	E)	(ISTING CORRIDOR CONDITIONS	3-1
	3.1	Utilities	3-1
	3.2	Environmental Characteristics	3-2
	3.2.1	Land Use	3-2
	3.2.2	2 Soils	3-2
	3.2.3	3 Groundwater	3-6
	3.2.4	Contamination	
	3.2.5	Flood Zones	
	3.2.6	Elevation and Hydrologic Features	
	3.3 2.4	Drainage	
	3.4 3./ 1		
	3.4.1	2 Traffic Counts	
	343	Historical Count Data	
	3.4.4	Existing Volumes	
	3.4.5	5 Hourly and Directional Distribution of Traffic (K and D Factors)	
	3.4.6	Existing Level of Service	
	3.4.7	Adjacent Roadways	3-21
4	DE	ESIGN CONTROLS AND STANDARDS	4-1
	4.1	Roadway Design Criteria	4-1
	4.2	Structures Design Criteria	4-7
	4.3	Drainage Criteria	4-8
	4.3.1	Water Quality and Pond Recovery	
	4.3.2	vvater Quantity	4-8

CENTRAL FLORIDA

EXPRESSWAY AUTHORITY

	4.3.3 Pond Design (EDOT Criteria)	4_9
	4.3.4 FEMA Floodplain Compensation	4-9
5	AI TERNATIVES CONSIDERED	5-1
Ŭ	5.1.1 Phase 1 - Initial Evaluation	5_1
	5.2 Phase 2 - Preliminary Concentual Expressival Evaluation	
	5.2 Thase 2 - Treinmary Conceptual Expressivaly Evaluation	5-1
	5.2.2 Concentual Interchange Configuration Evaluation	
	5.3 Phase 3 – Horizontal Alignment Considerations	5-7
	5.3.1 Alignment Alternatives	5-7
	5.3.2 Alignment Evaluation	5-9
6	FUTURE TRAFFIC ANALYSIS	6-1
•	6.1 Average Annual Daily Traffic (AADT)	6-1
	6.2 Design-Hour Traffic Forecasts and LOS	6-5
	6.3 Traffic Recommendations	6-13
7	PUBLIC INVOLVEMENT	
8		8-1
Ū	8.1 Preliminary Roadway Design	8-3
	8 1 1 Proposed Typical Sections	8-3
	8 1 2 Horizontal Alignment	8-3
	8 1 3 Vertical Alignment	8-3
	8.1.4 Bicycle and Pedestrian Accommodations.	
	8.1.5 Potential Design Exceptions and Variations	
	8.1.6 Access Management	
	8.1.7 Lighting	8-5
	8.1.8 Signing	
	8.1.9 Proposed ITS Devices	
	8.1.10 ITS Cost Estimate	8-7
	8.1.11 Structural Analysis	8-8
	8.1.12 Utility Impact Potential	8-17
	8.1.13 Proposed Drainage Conditions	8-18
	8.1.14 Floodplain Impacts	
	8.1.15 Right-of-Way Impacts	
	8.1.16 Construction Cost Estimate	
	8.1.17 Traffic Control Plan	8-29
	8.2 Permit Agency Coordination	
	8.3 Environmental Impacts	
	8.3.1 Historic Sites	
	8.3.2 Archaeological Sites	
	8.3.3 Wetlands and Other Surface Waters	
	8.3.4 Protected Species and Habitat	
	8.3.5 Highway I raffic Noise	
	8.3.6 Contamination	8-38
	8.4 Summary of Impacts	8-38

LIST OF FIGURES

Figure 1-1: Project Location Map	1-2
Figure 1-2: 2002 Western Extension Study Corridors	1-3
Figure 1-3: 2007 SR 429 to US 27 Connector Study Corridors	1-4
Figure 1-4: Approved Projects and Developments in the Area	
Figure 2-1: Segmental Breakdown	2-2
Figure 2-2: Preliminary Segmental Corridors	2-3
Figure 2-3: Pre-Final Corridors	2-14
Figure 2-4: AHP Results	2-20
Figure 2-5: Sensitivity Results	2-21
Figure 2-6: Recommended Corridor Area	2-23
Figure 3-1: Existing Land Use Map	3-3
Figure 3-2: Existing Soils Map	3-4
Figure 3-3: Contamination Site Map	3-9
Figure 3-4: Elevation Map	3-11
Figure 3-5: Hydrologic Features	3-12
Figure 3-6: Traffic Count Locations	3-14
Figure 3-7: 2018 AADT	3-16
Figure 3-8: 2018 AM & PM Peak Hour TMVs	3-17
Figure 3-9: Hourly Distribution of Traffic (SR 429 at Independence Plaza)	3-18
Figure 3-10: Hourly Distribution of Traffic (US 27, South of SR 50)	
Figure 3-11: Hourly Distribution of Traffic (US 27, 1.05 Mi. South of SR 50)	
Figure 5-1: Alternative Selection Process	5-1
Figure 5-2: Lake / Orange County Connector at US 27 Interchange	5-4
Figure 5-3: Lake / Orange County Connector at CR 455 Interchange	5-5
Figure 5-4: Lake / Orange County Connector at SR 429 Interchange	5-6
Figure 5-5: Alignment Alternatives	5-8
Figure 6-1: 2045 No-Build AADT	6-2
Figure 6-2: 2045 Build AADT	6-3
Figure 6-3: 2045 Build AM & PM Peak Hour DDHVs	6-6
Figure 6-4: 2045 Build AM & PM Peak Hour DDHVs	6-7
Figure 8-1: Preferred Alternative	8-2
Figure 8-2: Preferred Alternative Typical Section	8-3
Figure 8-3: Typical ITS Devices and Fiber Placement	8-6
Figure 8-4: Location of Proposed Bridges	8-11
Figure 8-5: Temporary Traffic Control Plan Summary	
Figure 8-6: MOT at the US 27 Interchange	
Figure 8-7: MOT at the SR 429 Interchange	8-33

LIST OF TABLES

Table 1-1: Local Planning Consistency	1-8
Table 2-1: Purpose and Need Evaluation	2-7
Table 2-2: Preliminary Project Corridors	2-9
Table 2-3: Preliminary Corridor Evaluation (Part I)	2-10
Table 2-4: Preliminary Corridor Evaluation (Part II)	2-10
Table 2-5: Preliminary Corridor Evaluation (Part III)	2-11
Table 2-6: Preliminary Composite Results	2-13
Table 2-7: Preliminary Alternative Corridor Elimination	2-13
Table 2-8: Pre-Final Alternative Corridor Evaluation	2-16
Table 2-9: Pre-Final Alternative Corridor Elimination	2-17
Table 2-10: Pre-Final Alternative Corridor Summary Results	2-18
Table 3-1: Existing Utilities	3-1
Table 3-2: On-Site Soils Based on USDA NRCS	3-5
Table 3-3: General Soil Conditions Based on Borings	3-6
Table 3-4: Contamination Site Summary	3-8
Table 3-5: Turning Movement Counts (TMCs) Locations	3-13
Table 3-6: Historical Traffic (2012-2017)	3-15
Table 3-7: Recommended K, D and T Factors	3-20
Table 3-8: 2018 Roadway Segment Level of Service	3-20
Table 3-9: 2018 AM and PM Intersection Level of Service	3-21
Table 4-1: Roadway Design Criteria	4-1
Table 4-2: Structures Design Criteria	4-7
Table 5-1: Two Lane VS Four Lane Comparisons	5-2
Table 5-2: Alternatives Evaluation	5-10
Table 6-1: 2045 AADT	6-1
Table 6-2: No-Build 2045 Daily Roadway Segment LOS	6-4
Table 6-3: Build 2045 Daily Roadway Segment LOS	6-5
Table 6-4: 2045 No-Build Peak Hour Roadway Segment LOS	6-8
Table 6-5: 2045 Build Peak Hour Roadway Segment LOS	6-8
Table 6-6: 2045 No-Build AM Peak Hour Intersection LOS	6-9
Table 6-7: 2045 No-Build PM Peak Hour Intersection LOS	6-10
Table 6-8: 2045 Build AM Peak Intersection LOS	6-10
Table 6-9: 2045 Build PM Peak Intersection LOS	6-11
Table 6-10: 95th Percentile Queue Lengths for 2045 Build	6-12
Table 7-1: PAG / EAG Group Members	7-1
Table 8-1: Proposed Horizontal Curves	8-3
Table 8-2: Proposed Vertical Curves	8-4
Table 8-3: Proposed Bridges	8-10
Table 8-4: Summary of Proposed Basin Limits and Outfall Locations	8-19
Table 8-5: Proposed Cross Drain General Information	8-22
Table 8-6: FEMA Floodplain Impact/Compensation Summary Table	8-28
Table 8-7: Right-of-way Impacts	8-29
Table 8-8: Construction Cost Estimate	8-29
Table 8-9: Potentially Contaminated Sites	8-39

Table 8-10: Summary of Impacts8-4	40
-----------------------------------	----

APPENDICES

- Appendix A: Corridor Report Analytical Hierarchy Process Results
- Appendix B: Reference Documents
- Appendix C: Utility Conflicts
- Appendix D: FEMA Firm Maps
- Appendix E: Public Involvement
- Appendix F: Concept Plans
- Appendix G: Cost Estimates
- Appendix H: State Historic Preservation Office Concurrence Letter

1 Introduction

CENTRAL FLORIDA

AUTHORITY

The proposed Lake/Orange County Connector is a strategic transportation investment aimed at supporting existing and future growth in south Lake and west Orange counties. It has been identified as a system expansion project need in the last four consecutive Central Florida Expressway Authority (CFX) master plans, the most current being the 2040 CFX Master Plan. The Orlando-Orange County Expressway Authority (OOCEA), now CFX, completed the 2007 SR 429 to US 27 Connector Concept Development and Evaluation Study which developed various viable corridors/alternatives and identified an unmet need for an east-west connection between US 27 and SR 429. This study will confirm the feasibility of the connector and will conduct a Project Development and Environment (PD&E) Study on defined alignments. **Figure 1-1** illustrates the location of the project.

The purpose of the Lake/Orange County Connector PD&E Study is to develop a proposed improvement strategy that is technically sound, environmentally sensitive and publicly acceptable. As with every PD&E Study, emphasis has been placed on the development, evaluation and documentation of detailed engineering and environmental studies including data collection, conceptual design, environmental analyses, project documentation and the preparation of a Preliminary Engineering Report (PER).

1.1 Project Description/Background

The vision of this critical east-west corridor has been documented in prior concept studies. In 2002, the OOCEA first investigated the potential to extend SR 408 (East-West Expressway) to the west to address the transportation needs of west Orange and east Lake counties. A report titled "Western Extension Concept Development and Feasibility Study" was prepared which investigated the feasibility of a limited-access toll road. Four primary corridors were identified (**see Figure 1-2**): a "Northern Corridor", a "SR 50 Corridor", a "Hartwood-Marsh Corridor" and a "Southern Corridor". The study concluded that only the "Southern Corridor" connecting SR 429 with US 27 in the general area of Schofield Road offered any long-term opportunity for Expressway Authority participation.

Figure 1-1: Project Location Map

CENTRAL FLORIDA

EXPRESSWAY AUTHORITY

1-2

Figure 1-2: 2002 Western Extension Study Corridors

CENTRAL FLORIDA

AUTHORITY

In 2007, a Concept Development and Evaluation Study for a potential SR 429 to US 27 Connector was prepared by the OOCEA. The purpose of the study was to determine the feasibility and viability of a potential SR 429 to US 27 expressway connection within an area south of Hartwood Marsh Road and north of US 192. Four distinct corridors were investigated (see **Figure 1-3**). The study found that Corridor B was not viable due to significant wetland and surface water impacts and relatively low traffic attraction. Corridor A (the southernmost option) had the largest traffic attraction but extended through an environmentally sensitive area while Corridor D (the northernmost option) had the lowest traffic attraction. Corridor C, which generally traversed the area adjacent to Schofield Road within the central portion of the study area, offered a potential balance between traffic attraction and minimization of environmental impacts.

Figure 1-3: 2007 SR 429 to US 27 Connector Study Corridors

1.2 Need

There are six project needs that serve as justification for the proposed improvements. These needs are: 1) Provide improved system connectivity/linkage; 2) Accommodate anticipated transportation demand; 3) Provide consistency with local and regional plans; 4) Support economic viability and job creation; 5) Support intermodal opportunities; and 6) Enhance evacuation and emergency service. The following sections describe the needs in more detail.

1.2.1 System Connectivity/Linkage

System linkage is defined as linking two or more existing transportation facilities or types of modal facilities between geographic areas or regional traffic generators.

Figure 1-1 illustrates the existing roadway network within the vicinity of the proposed project. There are two major north-south facilities serving the project area, SR 429, a four-

lane limited-access rural toll road at the eastern project terminus and US 27, a four-lane divided rural arterial at the western project terminus. In the east-west direction, SR 50, a six-lane urban arterial facility located approximately 7 miles to the north, and US 192, a six-lane urban divided arterial located approximately 7 miles south, connect Lake County to the Orlando urban core. These existing east-west facilities not only serve through traffic but also provide significant local access, thus limiting their ability to provide effective overall mobility.

At the present time, the east-west connectivity within the study area is deficient with Schofield Road, an unpaved 20-foot wide rural facility, providing the only connection between US 27 on the west and SR 429 on the east. A new limited-access, direct connection expressway facility would not only provide the much-needed connectivity in the area but would also significantly improve regional mobility and travel time.

A PER was completed in 2016 for Wellness Way, a new four-lane divided arterial extending from US 27 and connecting to New Independence Parkway in the vicinity of SR 429. It should be noted that the 2007 SR 429 to US 27 Connector Concept Development and Evaluation Study prepared by the OOCEA stated that a network of east-west six-lane roadway arterials could also meet the capacity need of the study area. The proposed Wellness Way facility alone will not be sufficient to provide the necessary east-west linkage to meet the anticipated growth of the area when compared to a new limited-access, direct connection expressway facility.

Interchanges are proposed at US 27 in Lake County, SR 429 in Orange County, and the future extension of CR 455 in Lake County. Lake County's Visionary Map shows a southerly extension of CR 455 from its current terminus to the future extension of Sawgrass Bay Boulevard.

1.2.2 Anticipated Transportation Demand

CENTRAL FLORIDA

AUTHORITY

According to the Central Florida Expressway Authority's 2040 Master Plan, Lake County's population is projected to increase by 56% (to 493,000 residents) and employment is projected to increase by 60% (to 212,700) by 2040. During the same time period, the population and employment growth within Orange County are expected to each increase by more than 50%. Two of the main areas of development generating additional

population are the Wellness Way Area Plan (WWAP) in south Lake County and the Horizon West Special Planning Area (HWSPA) in southwestern Orange County. The WWAP includes more than 16,000 acres. Horizon West is a growing community of several villages occupying more than 20,000 acres and projected to house over 60,000 residents when completed. Horizon West also features the future site of a Valencia College satellite campus.

The January 2018 Bureau of Economic and Business Research (BEBR) population projections show from 2017 to 2045 a 54% growth in population is anticipated for both Lake and Orange counties.

The study area traverses all five of the WWAP Future Land Use Categories (FLUC); Town Center and Wellness Way 1, 2, 3 and 4. The planning horizon for the WWAP is projected to be 2040 with a build-out of 16,500 dwelling units and a projected employment of 36,000. CEMEX, a multinational building materials supply company, submitted an updated permit for the proposed Four Corners Sand Mine in August 2017. They propose to operate on 1,200 acres within the WWAP, on property divided by Schofield Road. The permit allows mining approximately 525 acres over a 22-year period.

The study area also falls within the Town Center and Village H (Hickory Nut) of Horizon West. The Town Center will be a regional employment center with a projected employment force of over 27,000 and home to a host of new developments including a satellite campus of Valencia College and Orlando Health hospital. Overall, Horizon West has an anticipated build-out of 40,000 dwelling units and a projected commercial area of 9.5 million square feet.

An origin and destination (OD) study conducted by CDM Smith in 2017 for CFX revealed that much of the potential traffic for a new toll road would come from planned developments. In the year 2045, there is a potential for 34,000 daily trips traveling between US 27 and SR 429 in the vicinity of Schofield Road. With the proposed project as a tolled expressway, approximately 19,000 daily trips would be diverted from local roadways.

The proposed connector is anticipated to help accommodate the expected increase in traffic due to population and employment growth within the study area by expanding the limited-access expressway system.

1.2.3 Consistency with Local and Regional Plans

Planning consistency of the proposed project is documented in various local comprehensive plans (see **Table 1-1**). A brief explanation of each follows.

<u>CFX 2040 Master Plan and Five-Year Work Plan:</u> The subject project is a major component of the Authority's plan to provide additional capacity to address the area's increasing projected population and employment growth. The Lake/Orange County Connector would support the economic vitality of the WWAP and the HWSPA developments and is widely supported among local landowners and community leaders. The project is listed in the five-year work plan (2019-2023) and funded for PD&E in years 2018/2019 and for potential design in years 2021/2022 and 2022/2023.

Lake-Sumter Metropolitan Planning Organization (MPO) – 2040 Long Range <u>Transportation Plan (LRTP)</u>: The Lake-Sumter MPO provides a forum for cooperative decision-making concerning transportation issues throughout the urbanized area of Lake and Sumter counties. The latest draft list of priority projects (May 2018) shows that a "New Road Alternative Corridor Evaluation" between US 27 and SR 429 is listed as priority #20 under the Preliminary Engineering projects. In addition, the portion of the Lake/Orange Parkway project extending from US 27 to the Lake/Orange County line is included in the Lake-Sumter 2040 LRTP as a cost feasible element and as an Emerging Regional Significant Corridor.

West Orange South Lake Transportation and Economic Development Task Force (WOSLTED): This task force was initiated in 2000 with the goal of promoting transportation in the West Orange/South Lake (WOSL) region. In 2008, the task force started a planning process to ensure coordinated transportation and housing development which eventually resulted in a proposed system of new roadways and roadway improvements which included the provision of a proposed east-west connector from US 27 to SR 429. This connector has always been a main focus of this organization.

<u>MetroPlan Orlando:</u> MetroPlan Orlando is the metropolitan planning organization for the greater Orlando area. It coordinates and leads transportation planning efforts in Orange, Osceola and Seminole Counties. The subject project is listed on the 2040 LRTP Plan Development Cost Feasible projects (updated June 2017) as a funded project for both PD&E and design.

Agency	Remarks
Central Florida Expressway Authority (CFX)	Included in the 2040 Master Plan and the Five-Year Work Plan (2019-2023)
Lake-Sumter MPO	Identified the proposed project in the 2040 LRTP Needs Plan
West Orange/South Lake Transportation and Economic Development Task Force	Identified a connection between US 27 to Orange County in its Transportation Plan
MetroPlan Orlando	Identified in its Technical Report 3: "Plan Development and Cost Feasible Projects"

Table 1-1: Local Planning Consistency

1.2.4 Economic Viability and Job Creation

CENTRAL FLORIDA

AUTHORITY

The proposed facility is needed to further support the economic viability of the WWAP. This 16,000-acre service area has been recognized for many years as having significant potential for economic development in southeast Lake County. It is projected to be an economic engine for job creation in the region and is envisioned to strengthen its connectivity with other regional economic hubs. With an anticipated buildout of over 16,000 residential units, this important planned development is expected to generate over 26,800 jobs in the future.

The proposed connector will also directly benefit the economic and job creation potential of the Horizon West development by expediting the efficient delivery of goods and services in this developing area of west Orange County.

1.2.5 Support Intermodal Opportunities

The Horizon West Town Center is proposed as an intermodal and freight staging facility potentially providing access to trucks, rails, airports and/or ports. Its presence enhances the integration and connectivity of the multimodal transportation system. The proposed connector would link this freight staging facility with two major Strategic Intermodal System (SIS) highways (US 27 and SR 429) and thus connect Lake County to a network of limited-access facilities that provide access to the Orlando International Airport and Port Canaveral. In addition, the MetroPlan Orlando's "Regional Freight and Goods Movement Facilities Profile" noted that there is "limited existing east-west highway and rail connectivity within the region – which provides logistical challenges for some shippers". The proposed project will add a valuable east-west mobility link to the area's transportation network.

1.2.6 Evacuation and Emergency Services

The East Central Florida Region has been identified by the National Oceanic and Atmospheric Administration (NOAA) as a high hurricane-vulnerable area within the United States and thus requires sufficient and efficient evacuation routes. There are no existing designated east-west evacuation routes within the immediate project area. Only SR 50, approximately 7 miles to the north, and US 192 (SR 530), approximately 7 miles to the south, provide effective east-west evacuation connection to important north-south SIS routes in the area (US 27 and SR 429). The provision of an additional high-speed, limited-access east-west facility will afford desirable redundancy of the highway network to accommodate diverted local and regional traffic during times of natural or man-made emergencies.

Another critical issue deals with potential delays of fire and emergency services. There are two fire stations just north and south of the study area along US 27 but their linkage to the east is ineffective due to the lack of a paved or limited-access facility connecting to SR 429, potentially resulting in additional delays. The proposed connector would facilitate prompt fire and emergency response.

1.3 Other Projects in the Study Area

There are a number of on-going and future projects in the area (see **Figure 1-4**) including both public infrastructure projects and private developments that have been approved within the previously mentioned WWAP and the HWSPA. The widening of US 27 from four to six lanes was recently completed and several new roadways are being planned by Lake and Orange Counties. In addition to the approved planned developments (PD) shown on Figure 1-4, we are aware that much of the land within the study area is currently being planned for future development by several different private developers. Through extensive coordination efforts as well as the Project Advisory Group (PAG), a number of private developers have made CFX aware of their potential future plans. However, it should be noted that none of these have been submitted for permitting with Lake or Orange Counties and no conceptual plans have been shared with CFX at the time of this study. Close coordination with all projects, developments and agencies within the study area will be maintained throughout all phases of the project.

							•			
		5 Pareisped 7 Pare	5 Mile Road	R Propsed CR 455 Extension R C C C C C C C C C C C C C C C C C C			ounty provide County with Coun	PUTURE HORIZON 8 chofield Rd ealignment Lake Needham ZANZIBAR PD	la l	A Contraction of the second seco
	KEY	FACILITY	DESCRIPTION	REMARKS					Hickorynut	
	1	US 27 Widening	4 lane to 6 lane widening	Recently completed by FDOT			KEY	FACILITY	DESCRIPTION	
	2	Schofield Rd / Shell Pond Rd	2 lane (Paved) minor collector				8	Valencia College - Horizon West Campus	155 acre corporate campus mixed use	Approve
			Proposed southern extension	On-going Lake County PD&E Study			9	Lake Ingram	23± acre potential residential development and elementary school	
~	3	CR 455 Extension	to Schofield Rd					i lumou bovolopmont		
COUNTY	3	CR 455 Extension Olympus Sports & Entertainment	to Schofield Rd Office/Retail/Commercial and residential development	 Office: 685,164 ft²; shopping center/restaurants: 355,000 ft²; Residential: 1,000 DU; Recreational/Fitness: 357,541 ft²; Hotels: 1,060 Rooms Project phasing: 5 Years - 2018 through 2023 		COUNTY	10	Zanzibar PD/LUP	320 single family and 160 townhomes	Under of 21.6 acr
AKE COUNTY	3 4 5	CR 455 Extension Olympus Sports & Entertainment Clonts Grove	to Schofield Rd Office/Retail/Commercial and residential development Multi-family apartments and retail	 Office: 685,164 ft²; shopping center/restaurants: 355,000 ft²; Residential: 1,000 DU; Recreational/Fitness: 357,541 ft²; Hotels: 1,060 Rooms Project phasing: 5 Years - 2018 through 2023 Residential: 600 Units; Retail: 152,500 SF Begin construction approximately year 2023 	-	NGE COUNTY		Zanzibar PD/LUP Core Academy PD/UNP	320 single family and 160 townhomes Corporate campus mixed use	Under of 21.6 acr related u In Orang
LAKE COUNTY	3456	CR 455 Extension Olympus Sports & Entertainment Clonts Grove Ridgeview PUD	to Schofield Rd Office/Retail/Commercial and residential development Multi-family apartments and retail 153 acre proposed residential development	 Office: 685,164 ft²; shopping center/restaurants: 355,000 ft²; Residential: 1,000 DU; Recreational/Fitness: 357,541 ft²; Hotels: 1,060 Rooms Project phasing: 5 Years - 2018 through 2023 Residential: 600 Units; Retail: 152,500 SF Begin construction approximately year 2023 575 single family DU 	-	ORANGE COUNTY		Zanzibar PD/LUP Core Academy PD/UNP Valencia Parkway	320 single family and 160 townhomes Corporate campus mixed use Proposed lane facility	Under of 21.6 acr related u In Orang roadway

Figure 1-4: Approved Projects and Developments in the Area

2 Alternative Corridor Analysis

2.1 Identification of Project Segments

Initially, the study area was divided into three segments that reflect predominant land uses, natural resources, etc. to facilitate the analysis. The segmental breakdown approach ensures that the generated corridor alternatives are more responsive to the needs of each segment rather than only to the generalized project needs.

Figure 2-1 illustrates the study segments and provides a description of each. Each segment has unique characteristics as well as differences in environmental, engineering and socio-economic features.

<u>Segment 1</u> comprises the project's western two miles and generally extends from US 27, a rural four-lane north-south facility, to Cook Road, a minor north-south rural road just east of Lake Island. Some of the main features within this first segment include various lakes (e.g., Trout, Pike, Adain, Island), the Wellness Way Area Plan (WWAP) Town Center, Wellness Way 1, the proposed CEMEX Four Corners Sand Mine and portions of Wellness Way 2.

<u>Segment 2</u> comprises the central portion of the study area and extends from Cook Road to the Lake/Orange county line for a total length of approximately 1.8 miles. Some of the main features within this segment include portions of Wellness Way 2 and 3 and Southern Hill Farms north of Schofield Road, a rural two-lane east-west facility projected to be widened to 4 lanes in the future.

<u>Segment 3</u> extends for approximately one mile from the Lake/Orange county line to the study's eastern terminus at the SR 429 and Schofield Road interchange, where Schofield Road heads west and connects to US 27. Some of the principal features within Segment 3 include the Horizon West Town Center, the proposed Valencia College Horizon West Campus, Zanzibar, Hawksmoor, Horizon West Village H and Lake Needham.

Figure 2-1: Segmental Breakdown

2.2 Identification of Preliminary Segmental Corridors

Next, various preliminary segmental corridors were developed for the potential Lake/Orange County Connector (**see Figure 2-2**). These corridors were developed based on constraint mapping and input from the Project and Environmental Advisory Groups. Each corridor represents an 800-foot wide area for the purpose of assessing community and environmental impacts. As shown on Figure 2-2, seven distinct corridor options were generated within Segment 1 ranging from just north of Lake Trout (Corridor 1-1) to just

Figure 2-2: Preliminary Segmental Corridors

CENTRAL FLORIDA EXPRESSWAY AUTHORITY

Alternative Corridor Analysis | Preliminary Engineering Report

Lake/Orange County Connector (US 27 to SR 429) Feasibility/PD&E Study

2-3

CENTRAL FLORIDA EXPRESSWAY AUTHORITY

south of Lake Adain (Corridors 1-5 and 1-6). Within Segment 2, six potential corridor options traverse the central study area, Corridors 2-1, 2-4 and 2-5 generally run east-west along the north, center and south, respectively, of the study area while 2-2 and 2-3 feature connections between the north and center and 2-6 between the south and center portions of the study area. There are four preliminary corridor alternatives within Segment 3 ranging from the northern border of the study area (Corridor 3-1) to just north of Old YMCA Road (Corridor 3-4). A brief description of all preliminary corridors follows:

<u>Segment 1:</u> As previously stated, there are seven preliminary corridors within Segment 1.

- Corridor 1-1 commences in the immediate vicinity of the Lake Louisa State Park entrance on US 27. This corridor extends southeasterly generally bordering the north edge of Lake Trout, and then easterly within the vicinity of Schofield Road and north of Island Lake until it crosses the Schofield Road/Cook Road intersection.
- Corridor 1-2 commences approximately 2000 feet north of the South Bradshaw Road intersection on US 27 and extends northeasterly between Lake Trout and Lake Pike merging into Corridor 1-1 in the vicinity of Cook Road.
- Corridor 1-3 begins approximately one mile north of Frank Jarrell Road on US 27 and proceeds northeasterly between Lake Pike and Lake Adain turning due east in the vicinity of Cook Road.
- Corridor 1-4 is similar to Corridor 1-3 from its begin point on US 27 to the area just north of Lake Adain then turns due east crossing Cook Road approximately 2500 feet south of Schofield Road.
- Corridor 1-5 begins on US 27 just north of the Frank Jarrell Road intersection and proceeds northeasterly between Lake Adain and Lake Sawgrass merging into Corridor 1-4 in the vicinity of Cook Road.
- Corridor 1-6 is similar to Corridor 1-5 from its begin point on US 27 to the area between Lake Adain and Lake Sawgrass then turns more easterly until it crosses Cook Road at a point generally bordering the southern limit of the project area.

 Corridor 1-7: In order to consider an option with maximum directness within the first segment Corridor 1-7 was generated. This option begins in the same general vicinity as Corridor 1-2 on US 27 and extends due east just north of Lake Adain where it merges with Corridor 1-4.

<u>Segment 2</u>: This central segment features six distinct corridors as follows:

- Corridor 2-1 generally follows the existing Schofield Road alignment except in the vicinity of the Schofield Tract, an environmentally sensitive site, where this option dips farther south in order to avoid impacting the site.
- Corridor 2-2 is similar to Corridor 2-1 from the vicinity of the Cook Road/Schofield Road intersection to the Schofield Tract approaches. At this point, the corridor continues in a southeasterly direction and merges with Corridor 2-4 just west of the Lake/Orange county line.
- Corridor 2-3 initially extends from Cook Road at a point approximately 2500 feet south of Schofield Road to a point approximately 2600 feet to the east, then it veers northeasterly and merges with Corridor 2-1, just west of the Lake/Orange county line.
- Corridor 2-4 is initially similar to Corridor 2-3 but then continues eastward along the central portion of Segment 2 to the Lake/Orange county line at a point 1500 feet south of Schofield Road.
- Corridor 2-5 generally borders the southern study area limits just north of Lake Sawgrass and extends from Cook Road on the west to the Lake/Orange county line.
- Corridor 2-6 is similar to Corridor 2-5 from Cook Road to just west of the Lake/Orange county line, then it veers northeasterly and merges with Corridor 2-4 at the Lake/Orange county line.

<u>Segment 3</u>: There are four preliminary alternative corridors as follows:

• Corridor 3-1 extends northeasterly from the Lake/Orange county line in the vicinity of Schofield Road to just southeast of the existing SR 429/Avalon Road overpass.

- Corridor 3-2 generally follows the existing Schofield Road alignment from the Lake/Orange county line to the existing SR 429/Schofield Road interchange.
- Corridor 3-3 extends from the Lake/Orange county line at a point approximately 1500 feet south of Schofield Road and veers northeast terminating at the existing SR 429/Schofield Road interchange.
- Corridor 3-4 extends from the Lake/Orange county line just north of the southern study area limits to just south of the existing SR 429/Schofield Road interchange.

2.3 Initial Screening/Purpose and Need Compliance

An initial screening to assess how well each alternative corridor satisfies the previously established project's purpose and need was conducted. An alternative that does not satisfy the project's purpose and need may be eliminated from further consideration.

In order to avoid elimination, each corridor alternative would need to provide improved connectivity/linkage as compared to the No-Build (or No Action) Alternative. In addition, each corridor option was evaluated for traffic volume accommodated, planning consistency, support of economic development and job creation, and enhanced multimodal opportunities and emergency services.

Table 2-1 provides the screening criteria and results related to the purpose and need compliance. In order to better appreciate the obtained outcome, color values were assigned to the results as follows: Green cells (generally high compliance); Yellow cells (generally moderate compliance) and Orange cells (generally low compliance).

RATING GOOD HIGH COMPLIANCE	TABLE 2-1												
FAIR MODERATE COMPLIANCE		PURPOSE AND NEED EVALUATION											
ALTERNATIVES			SEGME	NT 1 - CORF	RIDORS				ę	SEGMENT 2	- CORRIDOR	s	
CRITERIA	1-1	1-2	1-3	1-4	1-5	1-6	1-7	2-1	2-2	2-3	2-4	2-5	2-
Improved Connectivity/ Linkage													
Traffic Volume Accomodated													
Planning Consistency													
Support Economic Vitality and Job Creation													
Enhanced Intermodal Opportunities													
Enhanced Emergency Services													

Basis of Evaluation

В

D

E

F

- Α - Based on the provision of effective connection to the existing/proposed major transportation facility/network within the project area
 - Projected traffic volume diverted from existing/projected congested transportation facilities
- С - Consistency with existing/proposed local/regional transportation plan
 - Based on the perceived likelihood of desirable economic development adjacent to the proposed interchange locations and their compatibility with existing/proposed abutting land use
 - Based on typical section design speed, high speed facility and strategic intermodal system criteria
 - Based on access, safety and design measures

Lake/Orange County Connector (US 27 to SR 429) Feasibility/PD&E Study

	٤	SEGMENT 3 -	CORRIDOR	S
-6	3-1	3-2	3-3	3-4

CENTRAL FLORIDA EXPRESSWAY AUTHORITY

In addition, the evaluation was conducted by segments in order to more clearly judge the performance of each corridor alternative within each individual segment it traverses rather than its "overall" performance. This approach provides a more in depth evaluation by showing where the corridor ranks higher and lower segmentally. The results from Table 2-1 show that generally all the corridors have green cells except for three corridors. Corridor 1-1 crosses over the Ridgeway PUD, within Segment 1 and Corridors 3-1 and 3-4 impact the Horizon West Campus and the Zanzibar PUD respectively within Segment 3. These potential impacts could affect the support of economic vitality and job creation.

In summary, although some corridors address the purpose and need more efficiently than others, it was determined that all of the established corridors do generally address the purpose and need.

2.4 Preliminary Alternative Corridor Evaluation

The preliminary alternative corridor evaluation was based on their potential impact with respect to engineering, socio-economic, and environmental issues. As previously stated, the objective of this preliminary evaluation is to eliminate inferior or suboptimal alternatives. In order to simplify the nomenclature of the various corridor options, the previous segmental corridors were aggregated to produce alternative corridors spanning all three project segments. According to **Table 2-2** twenty (20) different aggregated corridors extending from US 27 to SR 429 resulted from these combinations.

In order to better appreciate the obtained results, numerical values/scores were assigned to the results of the evaluation tables (**Tables 2-3** and **2-4**) as follows: Green cells (generally desirable or positive impacts = +2); Yellow cells (generally minor or moderate impacts = +1) and Orange cells (generally undesirable or negative impacts = 0). In addition, each evaluation component was assigned a percentage value (weight) depending on its perceived degree of importance. For example, the importance of the total engineering component was judged to merit 37% (see **Table 2-3**) of the total decision while the environmental (see **Table 2-4**) and socio-economic components (see **Table 2-5**) were assigned relative weights of 25% and 38%, respectively. These parameter weightings were developed from the average of individual weighting sets prepared by members of the consultant's team, reflecting a broad range of professional backgrounds.

Segment 1 Corridors	Segment 2 Corridors	Segment 3 Corridors	Preliminary Project Corridors
	+	3-1 =	Alternative 1
1-1	2-1 +	3-2 =	Alternative 2
+	2-2 +	3-3 =	Alternative 3
	+	3-1 =	Alternative 4
1-2	2-1 +	3-2 =	Alternative 5
+	2-2 +	3-3 =	Alternative 6
	+	3-1 =	Alternative 7
1-3		3-2 =	Alternative 8
+	2-2 +	3-3 =	Alternative 9
	+	3-1 =	Alternative 10
1-4	2-3 +	3-2 =	Alternative 11
+	2-4 +	3-3 =	Alternative 12
	+	3-1 =	Alternative 13
1-5	2-3 +	3-2 =	Alternative 14
+	2-4 +	3-3 =	Alternative 15
+	2-5 +	3-4 =	Alternative 16
+	2-6 +	3-3 =	Alternative 17
+	+	3-1 =	Alternative 18
1-7 +	2-3 +	3-2 =	Alternative 19
+	2-4 +	3-3 =	Alternative 20

Table 2-2: Preliminary Project Corridors

Table 2-3: Preliminary Corridor Evaluation (Part I)

Lake/Orange County Connector (US 27 to SR 429) Feasibility/PD&E Study

5	Alternative 16	Alternative 17	Alternative 18	Alternative 19	Alternative 20
	(1-6)+(2-5)+ (3-4)	(1-6) +(2-6)+ (3-3)	(1-7)+(2-3)+ (3-1)	(1-7)+(2-3)+ (3-2)	(1-7) + (2-4)+ (3-3)
1	4 P P	4 P P	4 PP	4 PP	4 P P
	4.PP	4.PP	4 PP	4.PP	4 PP
	8 PP	8 PP	11 PP	26 PP, 1 MPS	8 PP
1		1	100		
1	37.52	\$7.52	44.17	44.17	44.17
1	\$1.78	45.64	41.78	41.78	20.62
	47.05	46.50	1.87	\$.20	46,30
1					
	1.61	1 47	1 79	1 58	1 58

uve	Alternative 16	Alternative 17	Alternative 18	Alternative 19	Alternative 20
-4)+ 	(1-6)+(2-5)+ (3-4)	(1-6)+(2-6)+ (3-3)	(1-7)+(2-3)+ (3-1)	(1-7) + (2-3)+ (3-2)	(1-7)+(2-4)+ (3-3)
	29.92	29.92	20.59	20.59	20.59
	10.51	10.52	15.45	15.45	3.39
3	3.63	11.88	0.77	0.80	11.88
-	2.92	2.92	2.59	2.59	2.59
	1.91	1.95	1.91	1.91	2.08
	1.69	2.13	2.33	2.28	2.13
- 1	0	0	0	0	0
	0	D	0	0	0
_	8.46	3.72	0	0	3.72
7	126.73	126.73	129.75	129.75	129.75
3	118.57	126.53	144.72	144.72	149.63
5	51.38	47.35	108.82	81.77	47.35
-	0	0	1	1	1
1	- 1	1	2	2	2

Alternative Corridor Analysis | Preliminary Engineering Report

2-10
Table 2-5: Preliminary Corridor Evaluation (Part III)

RATING GOOD = +2 POINTS FAIR = +1 POINT POOR = 0 POINTS									PRELI	MINARY	SOCIO	-ECONC	DMIC EV	ALUATI	ON								
EVALUATION COMPONEN	NTS	QUANTITATIVE	MENT	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6	Alternative 7	Alternative 8	Alternative 9	Alternative 10	Alternative 11	Alternative 12	Alternative 13	Alternative 14	Alternative 15	Alternative 16	Alternative 17	Alternative 18	Alternative 19	Alternative 20
	Component Weight	MEASURE	SEG	(1-1)+(2-1)+ (3-1)	(1-1)+(2-1)+ (3-2)	(1-1)+(2-2)+ (3-3)	(1-2)+(2-1)+ (3-1)	(1-2)+(2-1)+ (3-2)	(1-2)+(2-2)+ (3-3)	(1-3)+(2-1)+ (3-1)	(1-3)+(2-1)+ (3-2)	(1-3)+(2-2)+ (3-3)	(1-4)+(2-3)+ (3-1)	(1-4)+(2-3)+ (3-2)	(1-4)+(2-4)+ (3-3)	(1-5)+(2-3)+ (3-1)	(1-5)+(2-3)+ (3-2)	(1-5)+(2-4)+ (3-3)	(1-6)+(2-5)+ (3-4)	(1-6)+(2-6)+ (3-3)	(1-7)+(2-3)+ (3-1)	(1-7)+(2-3)+ (3-2)	(1-7)+(2-4)+ (3-3)
			1	109.95	109.95	109.95	43.27	43.27	43.27	24.35	24.35	24.35	3.68	3.68	3.68	1.09	1.09	1.09	0.00	0.00	3.68	3.68	3.68
Approved Developments/Future Land Use		Acres	2	69.83	69.83	78.72	69.83	69.83	76.17	69.83	69.83	78.72	75.28	75.28	72.64	75.28	75.28	72.64	72.63	72.4	75.28	75.28	72.64
	15%		3	36.82	16.36	0	36.82*	16.36	0	36.82*	16.36	0	36.82*	16.36	0	36.82*	16.36	0	44.71	0	36.82*	16.36	0
			1	No pruiously recorded of thiral resources hitersecting	No preuious ly recorded cultural resources intersecting	No preulously recorded outstan resources in tesecting	No preulously recorded of fitral resources in tersecting	No preuiously recorded cultural resources intersecting	No preuio esiy recorded celta si reso erces la te secta g	No preudorsky recorded or threat resorces in tersecting	No preuious ly recorded cultural resources intersecting	No preulously recorded on the cal resources in testecting	No preudorsky recorded of the rail resol roes in tersecting	No preudously recorded on the cal resources In the second	No pieulously recorded cultural resources la tersecttag	1 small a c kae olog ka i site intersecting () ot e ligible)	1 sm all archaeologicais fe intelsecthig diotellgible)	1 small archaeological stie Intersecting (hoteligible)	1 small a chaeologica i site Intersecting Qiotie ligible)	1 sm all archae ologicals fle intersecting glote ligible)	No preulously recorded of the rail resources in the recording	No preuious ly recorded cultural resources latersecting	No preubasi recorded or th resources in tesecting
Historical/Archaeological		Number of Sites	2	1 kistoric structure witkilu 1000m/330mt (loteligilok)	1 kistorio structure witkin 100m /330ft (kote ligibik)	1 medium archaeologicalishe hite secting diote ligible) 1 historiostructure withih 100m.030m diote ligible)	1 kistoric structure witkik 1000m/330 rt (lioteligibik)	1 kistorio stracture witkia 100m /330m (actelligible)	1 medium arciaeologicalis He hite secting dote ligible) 1 kistorios tructure withih 100m.030mt dote ligible)	1 kistoric structure witkile 100m/330 tt (joteligible)	1 kisib ile structure witkik 100m /330it (Lote ligib ik)	1 medium archae ologicalishe hite secting diote ligible) 1 historics tructure within 100m.030ft diote ligible)	t medium arciaeological site in tersecting (noteligible)	1 medium archæologicalshe intersecting ototeligible)	1 kistoric structure witkila 1000m/330rt (hoteligibik)	1 m edium archae obgicals the htersectlig (hote ligble)	1 medium arokæologicalsite intersecting gloteligible)	1 kistoric structure witkihi 1000m/330rt (koteligibik)	2 medium arckaeological sfles lutersecting (Lote ligble)	2 medium archaeological sites inte secting otor ligible)	1 mediim aroi aeological site linte reecting (hot eligibik)	imedium anchaeologicalishte intersecting (Loteiligbile)	1 i istoriostrict w Mili 100m./33 ąkoteligibie)
7%		3	1 small archaeological site hite rsecthig (hoteligible)	1 small aic lae obgical site Intersecting (not eligible)	No preubasly recorded or fit tal resources in telsecting	1 small archaeological ste intersecting (loteligible)	1 sm all archae ological site Intersecting (not eligible)	No preulo esly recorded of the fail resources in telsecting	1 small arciaeological she line rsectlig (hoteligible)	1 small archaeological site Intersecting (note ligible)	No preudously recorded on the sal resources in tesecting	1 smail archaeological site in tersecting (toteligible)	1 sm all archæeologicals he intersecting gjoteligible)	No preuionsly recorded on thiral reson roes in terseoting	1 small archaeological site Intersecting (hotellgible)	1 sm all archae ological s fle in te secting glote ligible)	No preuionsly recorded on thirai reson roes in tense othing	No preuio is ly recorded cultural resol roes latersecting	No preudo tsly recorded of fit sl reso troes in te secting	1 small archaeological site intersecting (hoteligible)	1 small aic kae ologicalisite litersecting (rote ligible)	No preukousky recorded on thus resources in telsecting	
			1	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Parks/Recreational Facilities		Interaction with Planned Recreational Trail or State	2	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	YES	YES	NO	NO	NO	YES	YES	NO
	7%	Park	3																				
7%			1	AGRICULTURE 86.64 NATURAL 3.77 HYDRIC 4.15 TOTAL 94.58	AG RICULTURE 86.64 NATURAL 3.77 HYDRIC 4.15 TOTAL 94.56	AGRICULTURE 86.64 NATURAL 3.77 HYDRIC 4.15 TOTAL 94.56	AGRICULTURE 86.95 NATURAL 48.96 HYDRIC 8.62 TOTAL 144.53	AG RICULTURE 86.95 NATURAL 48.96 HYDRIC 8.62 TOTAL 144.53	AGRICULTURE 86.95 NATURAL 48.96 HYDRIC 8.62 TOTAL 144.63	AGRICULTURE 93.63 NATURAL 49.34 HYDRIC 26.10 TOTAL 172.07	AGRICULTURE 93.63 NATURAL 49.34 HYDRIC 26.10 TOTAL 172.07	AGRICULTURE 93.63 NATURAL 49.34 HYDRIC 26.10 TOTAL 172.07	AG RICULTURE 96.62 NATURAL 49.37 HYDRIC 32.81 TOTAL 177.80	AGRICULTURE 96.62 NATURAL 49.37 HYDRIC 32.81 TOTAL 177.80	AGRICULTURE 95.62 NATURAL 49.37 HYDRIC 32.61 TOTAL 177.80	AG RICULTURE 98.62 NATURAL 42.29 HYDRIC 37.18 TOTAL 178.09	AGRICULTURE 98.62 NATURAL 42.29 HYDRIC 37.18 TOTAL 178.09	AGRICULTURE 98.62 NATURAL 42.29 HYDRIC 37.18 TOTAL 178.09	AG RICULTURE 82.25 NATURAL 42.12 HYDRIC 34.62 TOTAL 168.99	AGRICULTURE 82.25 NATURAL 42.12 HYDRIC 34.62 TOTAL 158.99	AGRICULTURE 79.34 NATURAL 56.34 HYDRIC 40.5 TOTAL 176.18	AG RICULTURE 79.34 NATURAL 56.34 HYDRIC 40.5 TOTAL 176.18	AGRICULTUR 79.34 NATURAL 56 HYDRIC 40 TOTAL 176.1
Right-of-way Impacts		Acres per land use type; hydric (wetlands and waterbodies)	2	AGRICULTURE 85.87 NATURAL 1.92 HYDRIC 21.75 TOTAL 109.54	AG RICULTURE 85.87 NATURAL 1.92 HYDRIC 21.75 TOTAL 109.54	AGRICULTURE 105.02 HYDRIC 4.91 TOTAL 109.93	AGRICULTURE 85.87 NATURAL 1.92 HYDRIC 21.75 TOTAL 109.54	AG RICULTURE 85.87 NATURAL 1.92 HYDRIC 21.75 TOTAL 109.54	AGRICULTURE 105.02 HYDRIC 4.91 TOTAL 109.93	AGRICULTURE 85.87 NATURAL 1.92 HYDRIC 21.75 TOTAL 109.54	AG RICULTURE 85.87 NATURAL 1.92 HYDRIC 21.75 TOTAL 109.54	AGRICULTURE 105.02 HYDRIC 4.91 TOTAL 109.93	AG RICULTURE 84.21 NATURAL 1.92 HYDRIC 21.78 TOTAL 107.91	AGRICULTURE 84.21 NATURAL 1.92 HYDRIC 21.78 TOTAL 107.91	AGRICULTURE 96.86 HYDRIC 5.92 TOTAL 102.78	AG RICULTURE 84.21 NATURAL 1.92 HYDRIC 21.78 TOTAL 107.91	AGRICULTURE 84.21 NATURAL 1.92 HYDRIC 21.78 TOTAL 107.91	AGRICULTURE 96.86 HYDRIC 5.92 TOTAL 102.78	AG RICULTURE 82.36 HYDRIC 22.16 TOTAL 104.52	AGRICULTURE 91.12 HYDRIC 17.04 TOTAL 108.16	AGRICULTURE 84.21 NATURAL 1.92 HYDRIC 21.78 TOTAL 107.91	AG RICULTURE 84.21 NATURAL 1.92 HYDRIC 21.78 TOTAL 107.91	AGRICULTUF 96.86 HYDRIC 5.9 TOTAL 102.7
	9%		3	AGRICULTURE 51.95 NATURAL 18.37 HYDRIC 0.77 TOTAL 71.09	AG RICULTURE 46.45 NATURAL 17.49 HYDRIC 0.8 TOTAL 64.65	AGRICULTURE 47.25 NATURAL 26.46 HYDRIC 12.49 TOTAL 86.2	AGRICULTURE 51.95 NATURAL 18.37 HYDRIC 0.77 TOTAL 71.09	AG RICULTURE 46.45 NATURAL 17.49 HYDRIC 0.8 TOTAL 64.65	AGRICULTURE 47.25 NATURAL 26.46 HYDRIC 12.49 TOTAL 86.2	AGRICULTURE 51.95 NATURAL 18.37 HYDRIC 0.77 TOTAL 71.09	AG RICULTURE 46.45 NATURAL 17.49 HYDRIC 0.8 TOTAL 64.65	AGRICULTURE 47.25 NATURAL 26.46 HYDRIC 12.49 TOTAL 86.2	AGRICULTURE 51.95 NATURAL 18.37 HYDRIC 0.77 TOTAL 71.09	AGRICULTURE 46.45 NATURAL 17.49 HYDRIC 0.8 TOTAL 64.85	AGRICULTURE 53.28 NATURAL 26.45 WETLANDS 12.48 TOTAL 92.21	AG RICULTURE 51.95 NATURAL 18.37 HYDRIC 0.77 TOTAL 71.09	AGRICULTURE 46.45 NATURAL 17.49 HYDRIC 0.8 TOTAL 64.85	AGRICULTURE 47 25 NATURAL 26 46 HYDRIC 12 49 TOTAL 86 2	AG RICULTURE 40.62 NATURAL 0.08 HYDRIC 5.72 TOTAL 46.42	AGRICULTURE 47.25 NATURAL 26.46 HYDRIC 12.49 TOTAL 86.2	AGRICULTURE 51.95 NATURAL 18.37 HYDRIC 0.77 TOTAL 71.09	AG RICULTURE 46.45 NATURAL 17.49 HYDRIC 0.8 TOTAL 64.65	AGRICULTUF 47.25 NATURAL 26. HYDRIC 12.4 TOTAL 86.2
Total Socio-Economic Weight	38%																						
Total Socio-Economic : (higher score = highe	Score for each r performing a	Alternative Corridor Iternative corridor)		0.85	0.94	0.92	0.85	1.09	1.07	0.76	1.00	0.98	0.90	1.14	1.41	0.83	1.07	1.34	1.28	1.34	0.90	1.14	1.41
	REMARKS			Alternative 12 Alternative 1 c	had the highest on the other han	total score gene d ranked the low	rally due to its a est with potentia	voidance of sign I significant land	ificant impacts ir use impacts wit	h two of the three hin segment 1 a	e segments to ap nd potential imp	oproved develop acts to parks and	ments, historical d recreational fai	Varchaeological, cilities within the	and park and re first two segmer	creational faciliti ts.	es.						
Sample Calcuation for Alternative 1 Relative Segmental Reting	1 (Segment 2) (1 (Point)	Inder Approved Developments/F × Approved Developments/Future Land	uture La	nd Use] = 0.15	* Major	impacts to to the	Future Valenci	a College West	Campus and H	orizon West Tov	vn Center												

Table 2-6 summarizes the composite results obtained previously in **Tables 2-3**, **2-4** and **2-5** (engineering, environmental and socio-economic evaluations). The resulting total scores of these previous tables are shown on the last row of **Table 2-6**. The higher ranking "superior" alternative corridors are highlighted in yellow.

According to **Table 2-7**, Alternative Corridors 2, 5, 12, 15, 16, 17, 18, 19 and 20 were selected for further evaluation based on the criteria that they are the only ones that exceed the group median value of 3.77 and are within the standard deviation of 0.19. As previously noted, the objective of this phase is not necessarily to determine which options are the best but rather to identify which alternative(s) are clearly inferior so that they can be eliminated before even more stringent evaluation criteria and procedures are used during the next evaluation phase. The results obtained show that options 1, 3, 4, 6, 7, 8 9, 10, 11, 13, and 14 are clearly inferior and were thus eliminated from further consideration. **Figure 2-3** illustrates the remaining superior corridors.

(This space was left blank intentionally)

ALTERNATIVES	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6	Alternative 7	Alternative 8	Alternative 9	Alternative 10	Alternative 11	Alternative 12	Alternative 13	Alternative 14	Alternative 15	Alternative 16	Alternative 17	Alternative 18	Alternative 19	Alternative 20
CRITERIA	(1-1)+(2-1)+ (3-1)	(1-1)+(2-1)+ (3-2)	(1-1)+(2-2)+ (3-3)	(1-2)+(2-1)+ (3-1)	(1-2)+(2-1)+ (3-2)	(1-2)+(2-2)+ (3-3)	(1-3)+(2-1)+ (3-1)	(1-3)+(2-1)+ (3-2)	(1-3)+(2-2)+ (3-3)	(1-4)+(2-3)+ (3-1)	(1-4)+(2-3)+ (3-2)	(1-4)+(2-4)+ (3-3)	(1-5)+(2-3)+ (3-1)	(1-5)+(2-3)+ (3-2)	(1-5)+(2-4)+ (3-3)	(1-6)+(2-5)+ (3-4)	(1-6)+(2-6)+ (3-3)	(1-7)+(2-3)+ (3-1)	(1-7)+(2-3)+ (3-2)	(1-7)+(2-4)+ (3-3)
Engineering	1.50	1.65	1.61	1.65	1.44	1.47	1.54	1.33	1.29	1.68	1.47	1.47	1.32	1.47	1.47	1.61	1.47	1.79	1.58	1.58
Environmental	1.25	1.27	1.19	1.27	1.29	1.21	1.20	1.22	1.14	1.14	1.16	1.08	1.14	1.16	1.08	0.96	1.07	1.14	1.16	1.08
Socio-Economic	0.85	0.94	0.92	0.85	1.09	1.07	0.76	1.00	0.98	0.90	1.14	1.41	0.83	1.07	1.34	1.28	1.34	0.90	1.14	1.41
TOTAL	3.60	3.86	3.72	3.77	3.82	3.75	3.50	3.55	3.41	3.72	3.77	3.96	3.29	3.70	3.89	3.85	3.88	3.83	3.88	4.07

Table 2-6: Preliminary Composite Results

Tabl	Table 2-7: Preliminary Alternative Corridor Elimination											
Alternative	SCORE	MEDIAN	DEVIATION	REASONS FOR ELIMINATION								
1	3.60			Failed Criterion #1								
2	3.86			Remains Viable								
3	3.72			Failed Criterion #1								
4	3.77	1		Failed Criterion #1								
5	3.82			Remains Viable								
6	3.75			Failed Criterion #1								
7	3.50	1		Failed Criterion #1								
8	3.55	1		Failed Criterion #1								
9	3.41	1		Failed Criterion #1								
10	3.72	0.77	0.40	Failed Criterion #1								
11	3.77	3.77	0.19	Failed Criterion #1								
12	3.96			Remains Viable								
13	3.29			Failed Criterion #1								
14	3.70	1		Failed Criterion #1								
15	3.89			Remains Viable								
16	3.85			Remains Viable								
17	3.88			Remains Viable								
18	3.83			Remains Viable								
19	3.88			Remains Viable								
20	4.07			Remains Viable								

Selection Criteria

#1 - Only those alternatives which score higher than the median value for the group will be selected

#2 - The maximum gap between the last selected alternative and the next must not be greater than one standard deviation

Lake/Orange County Connector (US 27 to SR 429) Feasibility/PD&E Study

2.5 Pre-Final Alternative Corridor Evaluation

In order to refine the previous analysis, a multi-objective approach using a weighted numerical/descriptive technique was used for the remaining alternative corridors. Table **2-8** is a numerical/descriptive matrix, which describes and evaluates the features of the remaining corridor alternatives (see Figure 2-3). The evaluation used involved the generation of weighting scheme for each of the evaluation parameters. The evaluation parameters generally fall within four general criteria categories, engineering, socioeconomic, environmental, and cost. Ten (10) different evaluation sub-criteria were used. Each sub-criteria was assigned a value depending on its perceived degree of importance. These criteria and sub-criteria weightings were developed from the average of individual weighting sets prepared by members of the consultant's team reflecting a broad range of professional backgrounds. In addition, the alternative performance with respect to each parameter was compared using two benchmarks; 1) the overall effect on the specified parameter and/or 2) the relative effect between the competing alternatives. The overall effect received one of the five judgmental values (++ = 1.00, + = 0.80, o = 0.60, - = 0.40, - = 0.40)- - = 0.20). If, however any of the alternatives had an overall negative effect, then the worst alternative received a (- -) and the relatively better alternative received a higher score (-). If any two values were approximately equal then they both received the relatively lowest score. If the alternatives had an overall positive effect then the best alternative received a (++) and the relatively worse alternative received a lower score (+). A common value, therefore, signifies an equal overall and relative effect. This evaluation involves a combination of both qualitative and quantitative values resulting in an overall score. Each score indicated on the matrix is the result of multiplying the judgmental analysis rating times the relative weight for that parameter. For example, on Table 2-8, Corridor 2 under the "Geometric Features" parameter was given a (-) designation (judgmental value = 0.4) due to the potential access management issue resulting from its close proximity to Lake Louisa State Park's main entrance and the potential operational issues due to the close proximity of the proposed CR 455 interchange to Schofield Road. This judgmental value of 0.4 was then multiplied by the relative weight of the "Geometric Features" parameter (12.0) resulting in an overall score of 4.8. Those alternative options found most feasible, which merited further development and evaluation, are shown in yellow.

** * 0 -	SUBSTANTIALLY POSITIVE EFFECT OR BES GENERALLY POSITIVE EFFECT OR GOOD GENERALLY NO EFFECT OR MODERATE GENERALLY NEGATIVE EFFECT OR INFERK GENERALLY NEGATIVE EFFECT OR WORS	ST ALTERNATIVE 1.0 ALTERNATIVE 0.8 ALTERNATIVE 0.8 OR ALTERNATIVE 0.4 OR ALTERNATIVE 0.4 ST ALTERNATIVE 0.2									
		ENGINEER	RING	4	43	ENVIRONMENTAL	26	3	SOCIO-ECONOMIC	31	
ALTERNATIVES	GEOMETRIC FEATURES	TRAFFIC ATTRACTIONS	CONNECTIVITY/ DIRECTNESS	UTILITY IMPACTS	CONSERVATION LANDS	WETLAND IMPACTS	RECREATIONAL RESOURCES		CONTROVERSY POTENTIAL	RIGHT-OF-WAY IMPACTS 9 10	TOTAL SCORE
2 (1-1) + (2-1) + (3-2)	Potential access management issue due to the close proximity of Lake Louisa State Park main entrance. Potential operational issues due to the close proximity of the proposed CR 455 interchange to Schofield Road.	- Projected to attract 24,300 AADT (generally higher)	+ Provides systems + connectivity / Good directness	 Potential to impact 3.5 miles of major utilities along Schofield Road and other minor utilities (highest overall) 2. 	No direct impacts to conservation lands	+ Potentially 30.29 acres of wetland impacts (least overall) 0 6.4	Potentially minor visual and or noise impacts due to close proximity to Lake Louisa State Park cabins.	Potential impacts to Ridgeview PUD (moderate), CEMEX sand mine (minor) and Valencia College campus (minor). 4,8	Highest controversy caused by the potential impacts to the Ridgeview PUD, to the parcels that are located in the Horizon West Town Center that front Schofield Road, the Southern Hills Farms, and a limited access facility located in close proximity to Schofield Road.	Potentially 334.46 acres + of right-of-way impacts (moderate)	56.8
5 (1-2) + (2-1) + (3-2)	Potential operational issues due to the close proximity of the proposed CR 455 interchange to Schofield Road.	Projected to attract 23,700 AADT (generally medium)	o Provides systems	Potential to impact 3.5 miles of major utilities along Schofield Road and other minor utilities (highest overall)	No direct impacts to conservation lands	+ Potentially 33.24 acres of wetland impacts (relatively minor)	Potentially minor visual and consistent of the top of	Potential impacts to CEMEX sand mine (minor) and Valencia College campus (minor).	High controversy potential due to the potential impacts to the parcels that are located in the Horizon West Town Center that from Schofield Road, the Southern Hills Farms, and a limited access facility located in close proximity to Schofield Road	Potentially 384.43 acres o of right-of-way impacts (moderate)	59.0
12 (1-4) + (2-4) + (3-3)	Potential access management issue on US 27 with S Bradshaw Road and potential geometric issues due to the S-Curve around Lake Pike approaching US 27 in Segment 1 7.2	Projected to attract 23,700 AADT (generally medium)	Provides systems connectivity / Good directness	Potential to impact minor utilities [8]	Potentially 3.72 acres of impacts to conservation lands (moderate)	0 Potentially 41.01 acres of wetland impacts (moderate)	Potentially minor visual and noise impacts due to close proximity to Lake Louisa State Park cabins	Potential impacts to CEMEX sand mine (moderate).	Moderate controversy potential due to the potential impacts through the middle of the CEMEX Four Corners Sand Mine. Lower controversy potential with reduced impacts to the parcel that fronts Schofield Rd in the Horizon West Town Center.	6 b.0 b.0 b.0 of right-of-way impacts (moderate)	61.4
15 (1-5) + (2-4) + (3-3)	Low potential for geometric issues due to the S-Curve around Lake Pike approaching US 27 in Segment 1 9.6	Projected to attract 23,100 AADT (generally medium)	o Provides systems connectivity / Low directness	Potential to impact minor utilities	Potentially 3.72 acres of impacts to conservation lands (moderate) 8 6	o Potentially 68.25 acres of wetland impacts (relatively high)	No impacts to recreational + resources	Potential impacts to CEMEX sand mine (moderate).	Moderate controversy potential due to the potential impacts through the middle of the CEMEX Four Corners Sand Mine. Lower controversy potential with reduced impacts to the parcels that front Schofield Rd in the Horizon West Town Center. 5.	o Potentially 370.11 acres o of right-of-way impacts (moderate)	60.6
16 (1-6) + (2-5) + (3-4)	Potential interchange spacing isssue at SR 429	- Projected to attract 24,100 AADT (generally higher)	+ Provides systems	- Potential to impact minor utilities	Potentially 8.46 acres of impact to conservation lands (highest overall)	Potentially 65.02 acres of wetland impacts (relatively high)	No impacts to recreational resources	Potential impacts to CEMEX sand mine (moderate) and Zanzibar PD (minor). 4.8	- Moderate controversy potential due to the potential impacts to the Zanzibar PD (currently under construction), but impacting the CEMEX Four Corners Sand Mine in the south. Lower controversy potential with reduced impacts to the parcel that fronts Schofield Rd in the Horizon West Town Center.	o Potentially 323.76 acres + of right-of-way impacts (lowest overall)	58.2
17 (1-6) + (2-6) + (3-3)	Low potential for geometric + issues due to the S-Curve around Lake Pike approaching US 27 in Segment 1	Projected to attract 23,100 AADT (generally medium)	o Provides systems	Potential to impact minor utilities	Potentially 3.72 acres of impacts to conservation lands (moderate)	o Potentially 72.98 acres of wetland impacts (highest overall)	No impacts to recreational	Potential impacts to CEMEX sand mine (minor).	Low controversy potential due to potential impacts to the CEMEX Four Corners Sand Mine in the south. Lower controversy potential with reduced impacts to the parcels that front Schofield Rd in the Horizon West Town Center.	+ Potentially 356.18 acres o of right-of-way impacts (moderate) 2 6.0	64.8
18 (1-7) + (2-3) + (3-1)	Potential operational issues due to the close proximity of the proposed CR 455 interchange to Schoffeld Road. Potential interchange spacing issue at SR 429	Projectedd to attract 23,700 AADT (generally medium).	Provides systems c connectivity / slightly better than low directions.	Potential to impact 1 mile of major utilities along Schofield Road and other minor utilities.	- No direct impacts to conservation	+ Potentially 36.81 acres of wetland impacts (relatively minor).	No impact to recreational resources.	Potential impacts to CEMEX sand	Highest controversy potential due to the potential impacts to the parcels that are located in the Horizon West Town Center that front Schofield Road, the Valencia College Future Campus, the Southern Hills Farms, and a limited access facility located in close proximity to Schofield Road.	Potentially 355.18 acres o of right-of-way impacts (moderate) 8 6.0	52.2
19 (1-7) + (2-3) + (3-2)	Low potential for detrimental geometric issues on US 27 but potential operational issues due to close proximity of the porposed CR 455 interchange to Schofield Road.	Projected to attract 23,700 AADT (generally medium).	o Provides systems	+ Potential to impact 1.5 miles of major utilities along Schofield Road and other minor utilities.	- No direct impacts to conservation lands.	+ Potentially 36.84 acres of wetland impacts. (relatively minor)	No impacts to recreational + resources.	Potential impacts to CEMEX sand mine (moderate) and Valencia college campus (minor).	High controversy potential due to the potential impacts to the parcels that are located in the Horizon West Town Center that front Schofield Road, and through the middle of the CEMEX Four Corners Sand Mine	- Potentially 348.74 acres o of right-of-way impacts (moderate).	58.0
20 (1-7) + (2-4) + (3-3)	Lowest potential for geometric ++ issues 12.0	Projected to attract 23,700 AADT (generally medium)	o Provides systems connectivity / Good directness 2 6.4	+ Potential to impact minor utilities 8.	Potentially 3.72 acres of impacts to conservation lands (moderate) 8 6	o Potentially 35.86 acres of wetland impacts (relatively minor) 0 6.4	Potentially minor visual and consistent of the total of to	Potential impacts to CEMEX sand mine (moderate).	Moderate controversy potential due to the potential impacts through the middle of the CEMEX Four Corners Sand Mine. Lower controversy potential with reduced impacts to the parcel that fronts Schofield Rd in the Horizon West Town Center. 5.	o Potentially 365.4 acres o of right-of-way impacts (moderate) 4 6.0	67.8

Table 2-8: Pre-Final Alternative Corridor Evaluation

CENTRAL FLORIDA EXPRESSWAY AUTHORITY

Alternative Corridor Analysis | Preliminary Engineering Report

According to **Table 2-9**, both the group median scores and standard deviation were initially used as the basis for elimination of inferior options. The results obtained show that Alternative Corridors 2, 5, 16, 18 and 19 are clearly inferior since they did not meet selection criterion #1. In addition, Alternative 15 was eliminated from further consideration due to failing Criterion #3.

CENTRAL FLORIDA

AUTHORITY

Corridor	Score	Median	Standard Deviation	Reasons for Elimination
2	56.8			Failed Criterion #1
5	59.0			Failed Criterion #1
12	61.4			Remains Viable
15	60.6			Failed Criterion #3
16	58.2	59.0	4.09	Failed Criterion #1
17	64.8			Remains Viable
18	54.6			Failed Criterion #1
19	58.0			Failed Criterion #1
20	67.8			Remain Viable

Table 2-9: Pre-Final Alternative Corridor Elimination

Selection Criteria

#1 – Only those alternatives which score higher than the median value for the group will be selected

#2 – The maximum gap between the last selected alternative and the next must not be greater than one standard deviation

#3 - Only the top three alternatives which comply with the previous criteria (#1 and #2) will be selected for further consideration

Table 2-10 illustrates the general performance of the three top remaining alternatives. According to the table, Alternative 20 is the best option in terms of engineering features, but only "fair" (i.e. – moderately effective) in terms of avoiding potential environmental and socio-economic impacts. Alternative 12 is generally "fair" in all three decisional components and Alternative 17 is "fair" in terms of engineering features and avoidance of potential environmental impacts but is the highest ranked in terms of socio-economic issues. In summary, the total resulting scores of these three top alternatives are indeed very close and indicate that each could potentially provide a superior solution with an adequate balance between the three decisional components (engineering, environmental and socio-economic).

Table 2-10: Pre-Fina	Alternative Corridor	[,] Summary	Results
----------------------	----------------------	----------------------	----------------

DECISIONAL COMPONENTS				
ALTERNATIVES	ENGINEERING	ENVIRONMENTAL	SOCIO-ECONOMIC	SUMMARY
12	 Provides medium traffic attraction (23,700 AADT). Minor potential utility impacts generally similar to alternatives 17 and 20. Provides systems connectivity/moderate directness. Potential access management issues with US 27 and S. Bradshaw Road. 	 Generally minor visual and noise impacts due to its close proximity to Lake Louisa State Park cabins. 41.01 acres of potential wetland impacts. Only moderate impacts (3.72 acres) of impacts to conservation lands. 	 Moderate controversy potential due to the potential impacts through the middle of the CEMEX Four Corners Sand Mine. Potential right-of-way impact = 373 acres<u>+</u> 	 Although this alternative was not the best in any of the 3 decisional categories (engineering, environmental and socio-economic) it was the second best in engineering, resulting in a relatively high total score.
17	 Provides medium traffic attraction (23,100 AADT). Minor potential utility impacts generally similar to Alternatives 12 and 20. Not as direct as Alternatives 12 and 20. 	 Moderate impacts to conservation lands (3.72 acres) and no impacts to recreational resources but with higher wetland impacts (72.98 acres). 	 Good alternative with only minor potential impacts to approved developments and the CEMEX Four Corners Sand Mine Potential right-of-way impact = 356 acres<u>+</u> 	 Good alternative but not as direct as some of the other corridors. Good option in terms of potential avoidance of impacts to approved developments (only minor impacts).
20	 Provides medium traffic attraction (23,700 AADT) generally similar to alternatives 12 and 17. Minor potential utility impacts generally similar to the other two alternatives. Most direct of all alternatives. 	• Adequate alternative with only relatively minor impacts to wetlands (36 acres <u>+</u>) and conservation lands (3.7 acres).	 Similar to Alternative 12 with moderate controversy potential due to the impacts to the middle of the CEMEX Four Corners Sand Mine. Potential right-of-way impact = 365 acres<u>+</u> 	 Generally best solution in terms of engineering issues (most direct, minimal utility conflicts no significant problems in terms of future interchange locations). Tied with other two options in terms of environmental issues with moderate potential impacts to conservation lands and wetlands

2.6 Final Alternative Corridor Evaluation

In order to further test the validity of the results previously obtained in **Table 2-8**, the use of a more detailed evaluation procedure is necessary. The core decision-making tool used for the evaluation was the "Expert Choice" computer software, which utilizes the Analytical Hierarchy Process (AHP) procedure. The AHP method is based on the breakdown of each problem into a system of stratified levels of hierarchies where each level consists of criteria or objectives to be compared. The relative importance or priority for all the criteria in a given level is then established through a sequence of pair-wise comparisons, which will ultimately lead to the derivation of priorities (i.e., weights or importance) for each criterion. Each alternative is then compared in a series of pair-wise comparisons in relation to each of the evaluation criteria that leads to the determination of the recommended corridor alternative. A complete description of the project evaluation criteria and AHP methodology as well as the AHP computer run results are included in **Appendix A**. The results from the final alternative evaluation confirm that Corridor 20 is the top ranked alternative but only by a small margin (see **Figure 2-4**). In order to further reduce potential individual bias and investigate any sensitive criterion that could yield a different alternative ranking, a thorough sensitivity analysis of the AHP evaluation results was conducted. This feature investigates the effect on the ranking of the top priority alternative if the criteria take on other possible weight values.

Figure 2-5 illustrates distinct sensitivity analyses or "cases" which explore potential changes in the engineering deficiencies parameter (case 1), environmental impacts parameter (case 2), and socio-economic impacts parameter (case 3). The solid red vertical line shown for each case indicates the original assigned weight and the arrow pointing to the dashed line, the necessary increase (arrow pointing to the right) or reduction (arrow pointing to the left) in the original assigned weight that would be required for another alternative to overtake the superior alternative. In terms of case 1 (engineering deficiencies) the original assigned weight was 0.430. According to **Figure 2-5**, the weight would only need to be slightly decreased to 0.405 for Alternative Corridor 17 to overtake Alternative Corridor 20. As shown on the table at the bottom of the figure, this change would reassign values of 0.271 for the environmental impacts (instead of its original value of 0.260) and 0.324 for socio-economic impacts (instead of 0.310). Under Case 2 (environmental impacts), Corridor 20 maintains its relative superiority regardless of a change in criteria weights since the lines representing the competing alternatives never meet. Lastly, under Case 3 (socio-economic impacts), the original assigned weight of 0.310 would only have to be increased to 0.338 for Corridor 17 to overtake Corridor 20. This change would also result in relatively minor weight reassignments for the engineering (0.413) and environmental impacts categories (0.250). In summary, the sensitivity analysis confirms that both Corridors 20 and 17 are essentially tied and that the obtained results lack the necessary robustness to affirm that one is superior to the other since a slight shift in criteria weights could alter their final ranking.

Figure 2-4: AHP Results

2-20

Figure 2-5: Sensitivity Results

2.7 Corridor Conclusions

The conclusions obtained from the previous corridor evaluation show that the project area bounded by Corridor 20 on the north and Corridor 17 on the south (as shown on **Figure 2-6**) is generally the superior option.

It should be noted that the consideration for developing a major highway at a new location can be severely limited by physical, environmental and economic constraints. The next steps involve the generation of various alternatives within the selected corridor area which strive to mitigate or remove the existing and projected impacts and deficiencies and optimize the provision of an effective Lake/Orange County Connector facility.

Figure 2-6: Recommended Corridor Area

CENTRAL FLORIDA EXPRESSWAY AUTHORITY

Lake/Orange County Connector (US 27 to SR 429) Feasibility/PD&E Study

3 Existing Corridor Conditions

According to the results of the Corridor Analysis (summarized in Section 2 of this document), the preferred corridor area would provide an efficient location for the proposed Lake/Orange County Connector. This section of the report will briefly describe existing physical, operational and environmental issues prevalent within this corridor.

This section involved an on-site inventory and verification of current existing conditions as well as the collection of pertinent data that would serve as the basis for a detailed evaluation. Other important features along the study corridor such as utilities, as well as the social/environmental characteristics were reviewed and summarized. **Appendix B** of this report contains a list of references of previous study reports and other pertinent documents that were consulted during this task.

3.1 Utilities

Utility companies with known facilities within the proposed project limits were contacted and requested to submit as-built plans and information on any proposed utilities within the project limits. **Table 3-1** presents a list of utilities owners and types of utilities. A summary of the utility location based on the responses received is included in **Appendix C**.

Utility	Contact Information	Utility Type
AT&T Corp/PEA	Steve Eriksson – (407) 578-8000	Telephone
AT&T Florida	Alan Reynolds – (407) 351-8180	Telephone
Centurylink	Marlon Brown – (863) 452-3132	Telephone
Centurylink	Roy Dowless – (352) 368-8861	Telephone
Duke Energy	Jennifer Williams – (813) 909-1210	Electric
Duke Energy	Robb Brown – (352) 459-4671	Electric
Lake Utilities Services, Inc.	Bryan Gongre – (407) 869-8588	Water
Level 3 Communications, LLC	(720) 888-1089	Fiber Optic
Orange County Utilities	Jose Hernandez – (407) 254-9718	Water
Orlando Telephone Company, Inc.	Aaron Pickle – (321) 356-2995	Fiber and Telephone
Smart City Solutions	David Cawley – (407) 828-6648	Fiber Optic
Bright House Networks Charter	Paul Rymer – (321) 757-6503	Internet, Cable TV, Telephone
Sumter Electric Cooperative	David Nelson – (352) 569-9637	Electric
Verizon Business	Thomas Clark – (918) 590-9903	Telephone
Water Conserv II	Phil Cross – (407) 656-2332	Water

Table 3-1: Existing Utilities

3-1

3.2 Environmental Characteristics

The following sections briefly summarize some of the key environmental conditions prevalent within the project study area. For additional information regarding the existing environmental conditions please refer to the Project Environmental Impact Report (PEIR) and associated environmental documents prepared for this study.

3.2.1 Land Use

Land use descriptions provided for both uplands and wetlands are classified utilizing the Florida Land Use Cover and Forms Classifications System (FLUCCS) designations. Existing land use in the project area was initially determined utilizing U.S. Geological Survey (USGS) maps, historical images, aerial photographs, and land use mapping from the St. Johns River Water Management District (SJRWMD) (2012).

Land use categories mapped by SJRWMD are shown in **Figure 3-1**. Descriptions of FLUCCS codes are taken primarily from the Florida Department of Transportation (FDOT) (1999) and South Florida Water Management District (SFWMD) (2009). The majority of land in the project area consists of Improved Pastures (FLUCCS 2110), Citrus Groves (FLUCCS 2210), and Freshwater Marshes (FLUCCS 6410), with small intermixed Lakes (FLUCCS 5200).

The western side of the project area is composed of larger Lakes (FLUCCS 5200) and areas of Field Crops (FLUCCS 2150), Pine Plantation (FLUCCS 4410), Upland Hardwood Forest (FLUCCS 4200) and Mixed Upland Nonforested (FLUCCS 3100). The eastern side of the project area is composed of small areas of Xeric Oak (FLUCCS 4210), Citrus Groves (FLUCCS 2210) and Herbaceous Upland Nonforested (FLUCCS 3100).

3.2.2 Soils

The Natural Resources Conservation Service (NRCS) (2017) indicates that fifteen soil types occur in the study area (see **Figure 3-2**). Four hydric soil types, Basinger Fine Sand, Placid Sands, Oklawaha Muck, and Organic Soil are mapped in the project area. **Table 3-2** describes the soils listed by the Soil Survey as occurring on-site. In general, and based upon the USDA-NRCS Soil Survey for Lake and Orange Counties, sandy soils to depths of 80 inches below the natural ground surface are reported along the majority

Figure 3-1: Existing Land Use Map

CENTRAL FLORIDA EXPRESSWAY AUTHORITY

Existing Corridor Conditions | Preliminary Engineering Report

Table 3-2: On-Site Soils Based on USDA NRCS

Soil Type	Slope	Characteristics
Apopka Sand	5 to 12 Percent	This soil type consists of very deep, well drained, moderately slowly permeable soils on upland ridges, side slopes and knolls. They formed in thick beds of sandy and loamy marine or eolian deposits. This is not a hydric soil.
Arents	-	Soils that have been deeply mixed by plowing, spading, or other methods of moving by humans. These soils are used mostly as cropland, urban land, or pasture.
Basinger Fine Sand	0 to 2 Percent	This soil type consists of very deep, very poorly and poorly drained, rapidly permeable soil in low flats, sloughs, depressions and poorly defined drainage ways. They formed in sandy marine sediments. Permeability is rapid. This is a hydric soil.
Candler Sand	12 to 40 Percent	This soil type consists of very deep, excessively drained, very rapidly to rapidly permeable soils on uplands. They formed in think beds of eolian or sandy marine deposits. This is not a hydric soil.
Immokalee Fine Sand	0 to 5 Percent	This soil type consists of very deep, very poorly and poorly drained soils on flatwoods and in depressions. They formed in sandy marine sediments. Permeability is very rapid to moderate. This is not a hydric soil.
Lake Sand	0 to 5 Percent	This soil type consists of excessively drained, rapidly to very rapidly permeable soils formed in thick beds of sand. They are on nearly level to steep slopes in central Florida. This is not a hydric soil.
Myakka Sands	0 to 2 Percent	This soil type consists of very deep, very poorly or poorly drained, moderately rapid or moderately permeable soils that occur primarily in mesic flatwoods of peninsular Florida. They formed in sandy marine deposits. This is not a hydric soil.
Oklawaha Muck	0 to 2 Percent	This soil type consists of deep, very poorly drained soils that formed in herbaceous organic material and loamy and clayey mineral material. These soils are on floodplain, freshwater marshes, and depressions. This is a hydric soil.
Ona fine sand	0 to 2 Percent	This soil type consists of poorly drained, moderately permeable soils that formed in thick sandy marine sediments. They are in the flatwood areas of central and southern Florida. Permeability is moderate. This is not a hydric soil.
Organic Soil	-	Soils rich in nutrients and minerals, often found in wet, swampy areas. This is a hydric soil.
Orlando Fine Sand	0 to 5 Percent	This soil type consists of very deep, well drained, rapidly permeable soils that formed in thick deposits of sandy marine or fluvial sediments. They are on uplands in Peninsular Florida. This is not a hydric soil.
Placid Sand	0 to 2 Percent	This soil type consists of very deep, very poorly drained, rapidly permeable soils on low flats, depressions, poorly defined drainageways on uplands, and flood plains on the Lower Coastal Plain. They formed in sandy marine sediments. This is a hydric soil.
Pomello Sand	0 to 5 Percent	This soil type consists of very deep, moderately well to somewhat poorly drained soils that formed in sandy marine sediments. Pomello soils are on ridges, hills, and knolls in the flatwoods on marine terraces. This is not a hydric soil.
Seffner Sand	0 to 2 Percent	This soil type consists of very deep, somewhat poorly drained, rapidly permeable soils on the rims of depressions and on lower lying flats and knolls in the Lower Coastal Plain of south Florida. They formed in sandy marine sediments. This is not a hydric soil.
Tavares Sand	0 to 5 Percent	This soil type consists of very deep, moderately well drained soils that formed in sandy marine or eolian deposits. Tavares soils are on hills, ridges and knolls of the lower Coastal Plain. This is not a hydric soil.

of the project corridor with intermittent areas of plastic soils. In general, these soils are suitable for supporting proposed roadway embankments after proper subgrade preparation and removal of unsuitable materials.

To evaluate the subsurface conditions and groundwater table levels along the proposed project limits Standard Penetration Test (SPT) borings were advanced to depths of approximately 20 feet below the existing ground surface along the project corridor. The borings were located in areas along the various corridor alternatives in an attempt to encounter problematic soil conditions. The soil types encountered during this exploration have been assigned a stratum number and are listed in **Table 3-3**.

Stratum Number	Typical Soil Description	AASHTO Classification
1	Gray to Light gray, brown to light brown sand to sand with silt	A-3
2	Gray to gray-brown silty sand	A-2-4
3	Gray clayey sand	A-2-6.

Table 3-3: General Soil Conditions Based on Borings

It should be noted that although soil conditions considered detrimental to the proposed roadway alignment were not encountered during field explorations (at boring depths of 20 feet), further explorations will be required during design. The proposed alignments do traverse wetland areas and, although not encountered during this exploration, deeper organic soil may be encountered.

3.2.3 Groundwater

Results of field explorations show that the groundwater table, when apparent, was found to range from depths of approximately 6 inches to 10 feet below the existing ground surface. The seasonal high groundwater table (SHGWT) levels at the boring locations along the project corridor are estimated to range from at or above the existing ground surface to depths greater than 6 feet below existing grades. In general, the seasonal high groundwater table levels estimated along the project alignments were based on soil

stratigraphy, measured groundwater levels from the borings, the USDA NRCS Soil Survey information for Lake and Orange Counties, Florida, and surrounding topography.

3.2.4 Contamination

A Contamination Screening Evaluation Report (CSER) was prepared for this study. The analysis included information from Florida Department of Environmental Protection (DEP) and US Environmental Protection Agency (USEPA) databases as well as field investigations and reviews of historic and aerial photographs. The contamination sites are summarized in **Table 3-4**. **Figure 3-3** shows the locations of each site.

3.2.5 Flood Zones

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) (updated December 4, 2012 [Lake County] and September 25, 2009 [Orange County]), a large portion of the project corridor is located within Flood Zone X, which is a flood zone that has a 0.2% annual flood chance. Small portions of the project area are located within flood zones A and AE, which are flood zones that are inundated by the 100-year flood. FEMA FIRM maps are included in **Appendix D**.

CENTRAL FLORIDA EXPRESSWAY AUTHORITY	

Site #	Facility Name	Address	Facility ID (FDEP/ RCRA)	Databases	Concern	Owner	Distance of Contamination from Project Corridor
1	West Orange Environmental Resources C&D	7706 Avalon Road	85524	FDEP Solid Waste	Hazardous Waste	Orange County Environmental LLC	Approximately 0.3 miles northeast
2	Schofield Corporation of Orlando/545 Landfill	8050 Avalon Road	25291 / 9801128	FDEP Solid Waste / STCM	Hazardous Waste	Schofield Corporation of Orlando, Inc.	Approximately 0.4 miles southeast
3	Arnold Groves Storage Tank	15625 Frank Jerrell Road	9100695	STCM	Petroleum	JJJR Properties LLC	Approximately 0.5 miles south
4	Sun Ridge Four MGMT Inc.	6535 Cook Road	9803085	STCM	Petroleum	Catherine E. Ross Groves, Inc.	Adjacent
5	Island Lake Storage Tank- Lake County Grove	Cook Road	9700467	STCM	Petroleum	Lake Louisa LLC	Adjacent
6	Lake County Grove Storage Tank	732 Shell Pond Road	9201649	STCM	Petroleum	Davidson Harvest LLC et al C/O Karl Corporation	Adjacent
7	Hancock Grove Storage Tank	Porter Road East of Highway 545	8737209	STCM	Petroleum	Boyd Horizon West JV LLC	Approximately 1 mile northeast
8	Former Agricultural Areas	Throughout Project Area	None	None	Pesticides, Fertilizers	*not mapped*	Adjacent
9	Braun Properties	8815 Avalon Road	FLD984216531	RCRA	Hazardous Waste	N/A	Approximately 0.6 miles southeast
10	Orlando Health Emergency Room and Medical Pavilion	17000 Porter Road	FLR000229385	RCRA	Hazardous Waste (small quantity generator)	Orlando Health Central, Inc.	Approximately 1 mile northeast
11	Lake Louisa State Park	7305 US 27	FLR000148049	RCRA	Hazardous Waste (small quantity generator)	TIITF/REC & Parks Lake Louisa State Park	Approximately 1 mile northwest

Table 3-4: Contamination Site Summary

Figure 3-3: Contamination Site Map

Existing Corridor Conditions | Preliminary Engineering Report

3.2.6 Elevation and Hydrologic Features

Figure 3-4 shows elevation maps created with data collected using available LIDAR in North American Datum 1983 (NAD 83). The project area has a ground elevation ranging between approximately 90 and 210 feet. The lowest elevations, between 90 and 110 feet, are found throughout the project area, while the highest elevations are found on the western side of the area near the northwestern corner.

Hydrologic features and wetland areas mapped by the USFWS National Wetlands Inventory are shown in **Figure 3-5.** There are numerous freshwater ponds scattered throughout the area, along with two large lakes on the western side. Major wetland areas are located in the southwest portion of the project area, with smaller wetlands scattered throughout the western half and along the southern edge of the eastern half.

3.3 Drainage

CENTRAL FLORIDA

AUTHORITY

The proposed Lake/Orange County Connector corridor is located within the jurisdiction of the SJRWMD and SFWMD and hydrologically within the Reedy Creek Drainage Basin. The general drainage pattern for the project and the adjacent land is from west to east. Under existing conditions, the project discharges into a series of lakes/ponds, wetlands adjacent to the lakes/ponds, and depressional/low areas. Most of the existing on-site drainage sub-basins are open drainage basins that appear to overtop and combine at or before the 100-year FEMA flood plain storms. Some of the depressional/low area sub-basins are closed basins. None of the existing water/bodies in the project area were found to be outstanding or impaired water bodies.

3.4 Existing Traffic Conditions

The purpose of this section is to describe data collection efforts, document field observations, and summarize the existing (2018) operational characteristics of the roadway network in the Lake/Orange Connector (LOC) Study Area. More information can be found in the Project Traffic Analysis Report (PTAR), a supplemental document to this report.

3.4.1 Data Collection

The data collection tasks were performed during the last week of May 2018. The study area is bounded by Avalon Road on the east, Florida Turnpike on the north, U.S. 192 on

Existing Corridor Conditions | Preliminary Engineering Report

3<u>-12</u>

the south and U.S. 27 on the west. The counts were supplemented with historic traffic counts obtained by the FDOT, Orange County and Lake County.

3.4.2 Traffic Counts

Table 3-5 below lists the locations (both signalized and unsignalized) at which counts were collected. As shown in **Figure 3-6**, traffic counts were collected along Schofield Road, Seidel Road, Avalon Road, and cross streets intersecting SR 429 near where the Lake/Orange County Connector will be located. No traffic counts were collected along US 27 as the area was under construction at the time of data collection for this project. All traffic counts consisting of approach volume were adjusted using the latest FDOT axle and seasonal correction factors for Orange County to estimate 2018 annual average daily traffic (AADT). The traffic count data along with the FDOT adjustment factors are provided in the Project Traffic Analysis Report (PTAR), a supplemental document to this report.

#	Intersection Type	Count Location		
1	Unsignalized	SR 429 SB Ramps at New Independence Pkwy		
2	Unsignalized	SR 429 NB Ramps at New Independence Pkwy		
3	Unsignalized	SR 429 SB Ramps at Schofield Road		
4	Unsignalized	SR 429 NB Ramps at Schofield Road		
5	Unsignalized	SR 429 SB Ramps at Seidel Road		
6	Unsignalized	SR 429 NB Ramps at Seidel Road		
7	Unsignalized	Avalon Road at New Independence Pkwy		
8	Unsignalized	Avalon Road at Schofield Road		
9	Unsignalized	Avalon Road at Seidel Road		
10	Unsignalized	Avalon Road at Old YMCA Road		
11	Signalized	US 27 at Hartwood Marsh Road		
12	Signalized	Avalon Road at Marsh Road		
13	Signalized	New Independence Pkwy at Hamlin Grove Tr		

Table 3-5: Turning Movement Counts (TMCs) Locations

Figure 3-6: Traffic Count Locations

3.4.3 Historical Count Data

The historical count data from FDOT, Lake County, and Orange County since 2012 and compound annual growth rates (CAGR) are presented in **Table 3-6**.

Roadway	Location	2012	2013	2014	2015	2016	2017	CAGR
US 27	2.78 mi S of SR 50	28,000	29,500	30,500	34,500	32,500	36,000	5.15%
US 27	1.05 mi S of SR 50	29,000	31,500	32,000	34,000	26,000	35,000	3.83%
US 27	0.78 mi S of SR 50	37,000	43,000	41,000	43,500	42,000	45,000	3.99%
Hartwood Marsh Rd	0.15 mi E of US 27	11,470	11,220	11,910	10,700	14,100	14,930	5.42%
Avalon Rd (CR 545)	0.1 mi S of Old YMCA Rd	3,400	3,400	3,900	3,900	3,900	7,000	15.54%
US 192	2.3 mi E of Orange Co. Line	58,000	55,500	55,000	49,000	56,500	60,000	0.68%
SR 429	North Seidel Rd	14,880	15,600	17,510	22,950	26,790	31,920	16.49%

Table 3-6: Historical Traffic (2012-2017)

3.4.4 Existing Volumes

The 2018 AADT turning movement volumes are shown in **Figure 3-7**. Turning movement volumes are at SR 429 SB Ramps at Schofield Road, SR 429 NB Ramps at Schofield Road, Avalon Road at Schofield Road, SR 429 SB Ramps at New Independence Pkwy, and SR 429 NB Ramps at New Independence Pkwy. The 2018 AM and PM Peak Hour turning movement volumes are provided in **Figure 3-8**.

3-16

Existing Corridor Conditions | Preliminary Engineering Report

3-17

3.4.5 Hourly and Directional Distribution of Traffic (K and D Factors)

The hourly distribution of traffic includes information on the usage characteristics of the facility. The hourly distributions represent counts collected during a typical week from the Florida Transportation Information (FTI) webpage, field and CFX plaza data. **Figure 3-9** represent the hourly traffic distribution on SR 429 within the Project limits.

Figure 3-9: Hourly Distribution of Traffic (SR 429 at Independence Plaza)

Traffic on SR 429 at the Independence Main Plaza has a commuter traffic pattern with strong AM Peak and even stronger PM Peak traffic volumes. The directionality is southbound in the morning and Northbound in the afternoon. Traffic on distribution on US 27 south of SR 50 has less of a commuter pattern, which is indicative of the retirement housing development along the US 27 corridor in Clermont. The pattern in **Figure 3-10** shows that the prevalent direction of travel is northbound in both the AM and PM peak periods, while traffic further south (**Figure 3-11**) has a southbound directionality in the PM peak period.

Figure 3-10: Hourly Distribution of Traffic (US 27, South of SR 50)

Figure 3-11: Hourly Distribution of Traffic (US 27, 1.05 Mi. South of SR 50)

For a conservative analysis, a K-factor of 11.0% and a D-factor of 60.0% were assumed for the Lake/Orange County Connector traffic analysis, as shown in **Table 3-7**. Truck traffic is typically lower on toll facilities and a T-factor of 4.0% was assumed in this study.

Location	K Factor	D Factor	T Factor	
Lake/Orange Connector	11.0%	60.0%	4.0%	
SR 429	10.0%	55.0%	7.0%	
Schofield Road	9.0%	60.0%	4.0%	

Table 3-7: Recommended K, D and T Factors

Standard K-factor (9.0%) was assumed for the Schofield Road. However, slightly higher K- factor (10.0%) was used for SR 429 as the facility observed peaks in both directions during both AM and PM Peaks. Since SR 429 has been in operation for several years, 10.0% K- factor was considered for SR 429 instead of 9.0%.

3.4.6 Existing Level of Service

In the study area, Level of Service (LOS) is determined by use of the FDOT 2012 Generalized Service Volume Tables for interrupted flow facilities on State Signalized Arterials. Within this context, the majority of the study area facilities are treated as an urban major collector whereas US 27 is designated as a rural principle arterial. The determined LOS for 2018 AADT values is shown in **Table 3-8** below.

Roadway	Lanes	AADT	LOS
SR 429 N of Schofield Road	4L	39,000	В
SR 429 S of Schofield Road	4L	36,400	В
Avalon Road N of Schofield Road	4L	7,000	С
Avalon Road S of Schofield Road	4L	11,400	С
US 27 N of LOC	6L	27,000	В
US 27 S of LOC	6L	27,000	В
Schofield Road E of SR 429	4L	4,200	В
Schofield Road W of SR 429	4L	200	С

 Table 3-8: 2018 Roadway Segment Level of Service

The 2018 existing turning movement counts were utilized in performing the intersection level of service operations analysis using the HCS software. **Table 3-9** below shows a summary of the intersection LOS for the peak hour conditions (both AM and PM Peaks).

Under the existing conditions, most signalized and unsignalized intersections were found to operate at LOS B or better during both AM and PM peak hour conditions. Improvements are recommended at the unsignalized intersection of Southbound SR 429 & New Independence Parkway and Avalon Road & Schofield Road.

Interpection	Movement	AM Peak			PM Peak		
Intersection	wovement	V/C	Delay	LOS	V/C	Delay	LOS
SR 429 NB Ramp at	NB L	0.04	14.90	В	0.43	26.40	D
Pkwy	NB R	0.04	9.80	А	0.23	11.90	В
SR 429 SB Ramp at	SB L	0.63	23.90	С	1.22	147.60	F
Pkwy	SB R	0.06	8.90	А	0.19	10.30	В
Avalon Road	EB L	0.10	27.80	D	0.50	41.60	Е
at Schofield Road	EB R	0.26	12.00	В	0.28	11.30	В
SR 429 NB at	NB L	0.01	10.90	В	0.01	10.60	В
Schofield Road	NB R	0.02	9.30	А	0.05	9.60	А
SR 429 SB at	SB L	0.22	10.20	В	0.23	10.20	В
Schofield Road	SB R	0.00	8.40	А	0.01	8.50	А

Table 3-9: 2018 AM and PM Intersection Level of Service

3.4.7 Adjacent Roadways

CENTRAL FLORIDA

AUTHORITY

<u>US 27</u>: US 27 is owned and maintained by the FDOT, is designated as part of the Strategic Intermodal System (SIS) and is functionally classified as an urban principal arterial. This segment of US 27 has a posted speed of 60 mph and has an access

classification of 3. FDOT recently completed construction of US 27 within the limits of this study to 6 lanes with a divided median.

<u>SR 429</u>: SR 429 is owned and maintained by CFX, is designated as part of the Strategic Intermodal System (SIS) and is functionally classified as an urban principal expressway. This segment of SR 429 has a posted speed of 70 mph and has an access classification of 1.

4 Design Controls and Standards

Design controls and standards must be established prior to the formulation of design alternatives to ensure an adequate, safe, functional and operational roadway. These criteria are needed to develop typical sections, horizontal and vertical alignments, and other design features such as drainage, aesthetics, landscaping, and multimodal facilities. The controls and standards are those specified by CFX.

4.1 Roadway Design Criteria

As previously stated, the proposed Lake/Orange County Connector facility is a limited access tolled east-west expressway owned and operated by CFX. The standards that apply to this project are detailed in **Table 4-1**

Design Standard	Source		
2045	- Scope of Services		
WB-62FL/WB-67	- AASHTO 2004, Pg. 18 - FDM Part 2, Sect. 201.5		
70 mph 60 mph 30-45 mph 55-70 mph 45 mph 50 mph As appropriate 50 mph 30 mph	- FDM Part 2, Tbl. 201.4.1 & Tbl. 201.4.2		
12-ft 15-ft 24-ft Case dependent 11-ft (DS 40-45) 11-ft (DS 40-45)	- FDM Part 2, Sect. 211.2 - FDM Part 2, Sect. 210.2 EDM Part 2, Sect. 223.2.1.1		
	2045 WB-62FL/WB-67 70 mph 60 mph 30-45 mph 55-70 mph 45 mph 50 mph As appropriate 50 mph 30 mph 30 mph 12-ft 15-ft 24-ft Case dependent 11-ft (DS 40-45) 11-ft (DS 40-45) 7-ft (new construction)		

Table 4-1: Roadway Design Criteria
Design Element		Desig	In Stand	ard	Source
<u>Cross Slope (lanes 1-way)</u> Roadway 2-lane (2) 3-lane (3) 4-lane (4) ₂ Bridge Section	-0.02 ft/ft -0.02 ft/ft +0.02 ft/ft –0.02 (ty	(2) (2), -0.03 t (1), -0.03 pical, unif	3 ft/ft (1) 2 ft/ft (2), -(form, no slo	- FDM Part 2, Fig. 210.2.1 - FDM Part 2, Sect. 260.4	
<u>Max. Lane "Roll-over"</u> DS < 35 mph DS => 35 mph	6.0% 5.0%			- FDM Part 2, Tbl. 210.2.2	
Median Width Freeway DS 60 mph ≥ DS 60 mph < All Arterial & Collector DS 45 mph ≤ DS 45 mph >	60-ft (64- 40-ft 26-ft (with 22-ft 30-ft (Cur	ft for Inte n barrier) rbed); 40•	rstate with -ft (Flush S	- FDM Part 2, Tbl. 211.3.1 - FDM Part 2, Tbl. 210.3.1	
Offset Left Turn Lanes Median width 30-ft < Median width 30-ft >	Parallel c Taper off	offset lane set lane)		- FDM Part 2, Sect. 212.14.4 & Fig. 212.14.3 - AASHTO Exh. 9-52
	Total	(ft)	Pave		
Shoulder Width (lanes 1-way) Freeway 3-lane or more	Outside 12	Left 12	Outside 10	Left 10	-FDM Part 2, Tbl. 211.4.1.
2-lane	12	8	10	4	Tbl. 210.4.1
Ramp 1-lane 2-lane	6 10	6 8	4	2 4	
Aux. Lane	12	10	8	4	
Arterial & Collector (Norm. vol.) 2-lane with gutter 1-lane without gutter Service Road, 2-Lane, 2-Way,	15.5 10	13.5 8	8 5	6 N/A	
Undivided Shoulder Cross Slope Max. Shoulder "Roll-over"	0.06 7.0%	o 0.05 7.0%		IN/A - -	

Design Element	Design Element				Design Element
Bridge section (lanes 1-way) 2-lane 3-lane or more 1-lane ramp 2-lane ramp Service Road, 2-Lane, 2-Way Undivided	10 10 6 10 10	6 10 6 10		- - -	-FDM Part 2, Figure 260.1.1
Border Width Freeway Ramp Arterial/Collector DS ≥ 50 mph DS < 50 mph Arterial/Collector (Curb & Gutter) DS = 45 mph DS ≤ 40 mph	94-ft, (94-ft desirable) 94-ft, (L.O.C. plus 10-ft as min.) 40-ft 33-ft 14-ft (12-ft with bicycle lane) 12-ft (10-ft with bicycle lane)				- FDM Part 2, Tbl. 210.7.1 - (CFX Policy)3
<u>Roadside Slopes</u> Front slope	Fill Heigh All	nt (ft)	Rate 1:4 or flatter (Use 10-ft bench at half the height of fill)		- FDM Part 2, 215.2.3 - (CFX Policy) ₃
Front slope (curb & gutter)	All		1:4 or flatter		Use 1:3 slopes, avoid 1:2 slopes except where as necessary
Back slope	All		1:4 but not steeper than 1:3		
Back slope (curb & gutter)	All		1:3 or flatter located within the clear zone		

Design Element	Design St	andard	Source
Max. Grade /	Max. Grade	%	
Max. Change in Grade Freeway (Rural / Urban) Ramp	3.0%	0.20% / 0.30%	- FDM Part 2, Tbl. 210.10.1, Tbl. 210.10.2
Directional	8.0%	0.60%	
Arterial	7.0%	0.90%	
DS 55 mph	6.0%	0.50%	
DS 45 mph	6.0%	0.70%	
Collector	0.070		
DS 35 mph to 45 mph	6.0% to 7.0%	0 70% to 0 90%	
Min. Grade Curb & Gutter	0.2%	0.7070 10 0.3070	
	0.3%	-	
Minimum Stopping Sight Distance	Dsgn. Speed (mph)	Distance (ft)	- FDM Part 2., Tbl. 210.11.1
(Grades 2.0%)	70	730	,, _
(Non-Interstate/All Other Facilities)	65	645	
	55	495	
	50	425	
	45	360	
	30	200	
Decision Sight Distance	Dsgn. Speed (mph)	Distance (ft)	- AASHTO Exh 3-3
(Per avoidance maneuver)	70	/80-1445	
(,	55	535-1135	
	50	465-1030	
	45	395-930	
	30	220-620	
<u>Horizontal Curve Length</u> Freeway Others	V = Design Sp 30V (15V min. 15V (30V for h ramps)	beed) high speed	- FDM Part 2, Tbl. 211.7.2
Max. Curvature (Degree of Curve)	· •		
DS = 70 mph			- FDM Part 2, Tbl. 210.9.1
DS = 60 mph	3 30' 00"		
Δrterial	5 15' 00"		
DS = 55 mph	0.001.00"		
DS = 45 mph	6 30' 00" 10 15' 00"		
Collector (Urban)	10 10 00		
DS = 45 mph	10 15' 00"		
DS = 50 mph	8 15' 00"		
Ramp (Rural) DS = 50 mph Directional DS = 30 mph Loop	8 15' 00" 24 45' 00"		

Design Element	Desig	n Stand	lard	Source		
<u>Superelevation Transition</u> Tangent Curve <i>Spirals</i>	80% (50% min.) 20% (50% min.) (Curves 1°30' 00" do not use spirals)			-FDM Part 2, Tbl. 210.9.3 - (CFX Policy) ₃		
Superelevation Rates	emax	SE	Trans.	- FDM Part 2, Tbl. 210.9.1, Tbl.		
DS = 70 mph DS = 65 mph Arterial	0.10 0.10	1: 1:	250 250	- Design Standards Ind. No. 510, 511		
DS = 55 mph DS = 45 mph Collector	0.10 0.05	1: 1:	225 150	- AASHTO Exh. 3-28		
DS = 45 mpn DS = 50 mph	0.05 0.10	1: 1:	150 200			
Ramp (Rural) DS = 50 mph Directional DS = 30 mph Loop	0.10 0.10	1: 1:	200 175			
Vertical Curves Length, L = KA	Design Speed (mph)	K-\ Croct	/alue	- FDM Part 2, Table 210,10,3		
<u> </u>	70	401	<u> </u>	,,		
	65	313	157	- AASHTO Exh. 3-72 (crest) 3-75 (sag)		
	55	185	115			
	50	136	96			
	45	98	79	- CFX Policy ₃ Note: FDOT K-values for		
	30	31	37	"ALL OTHER FACILITIES" are desirable		
Minimum Lengths	Crest		Sag	EDM Dort 2 Table 211.0.2		
Freeway DS = 65-70 mph	1000-ft - 1800-ft		800-ft	- FDM Part 2, Table 211.9.5		
Arterial DS = 55 mph DS = 45 mph Collector	350-ft 135-ft		250-ft 135-ft	- FDM Part 2, Table 210.10.4		
DS = 45 mph DS = 50 mph Bamp	135-ft 300-ft		135-ft 200-ft			
DS = 50 mph Directional DS = 30 mph Loop	300-ft 90-ft		200-ft 90-ft	- FDM Part 2, Table 211.9.3		

Design Element	Design S	standard	Source
<u>Ramps</u> Ramp Terminals Length Taper	Entrance "Parallel-Type" 900 to 1200-ft 300-ft (25:1)	<u>Exit</u> "Taper-Type" 550-ft (2 [°] to 5 [°] , 4 [°] desirable)	- Design Standards Ind. No. 525 - AASHTO Pg. 850-856
<u>Minimum Spacing</u> Entrance to Exit ⁶ Exit to Entrance Entrance to Entrance Exit to Exit Turning Roadways	1,600 to 2,000-ft 500-ft 1,000-ft 1,000-ft 600 to 800-ft		- AASHTO Exh. 10-68, Pg. 844
Lane Drop Taper	L = WS (DS > 45 L = WS ² /60 (DS 50:1 min, 70:1 do (freeways)	5 mph) <=40 mph) esirable	- FDM Part 2, Sect. 211.2.4 - AASHTO Pg. 818
	36-ft 36-ft 30-ft 4-ft (Curb & Gutt As appropriate 4-ft (Curb & Gutt 24-ft 14-ft to 24-ft 10-ft to 12-ft	er) er)	- FDM Part 2, Tbl. 215.2.1, Tbl. 215.2.2
<u>Vertical Clearance</u> Over Roadway Over Railroad Sign over Roadway Over Water	16'-6" 23'-6" 17'-6" 12'-0" min.		- FDM Part 2, Tbl. 260.6.1
Limited Access Limits Rural Urban Crossroad overpass/ no interchange	300-ft min. 100-ft min. 200-ft		- FDM Part 2, Sect. 211.15

4.2 Structures Design Criteria

The structures design criteria is depicted in Table 4-2.

Design Element	Design Standard	Source
	FDOT Structures Manual, January 2019	FDOT
	AASHTO LRFD Bridge Design Specifications, 8 th Edition (LRFD)	AASHTO
Design Specifications	FDOT Design Manual, January 2019	FDOT
	FDOT Structures Design Manual, January 2019	
	Structures Design Guidelines (SDG)	FDOT
	Structures Detailing Manual (SDM)	
Governing Standards and	FDOT FY 2019-20 Standard Plans and July 2019 Standard	EDOT
Construction Specifications	Specifications for Road and Bridge Construction	1001
	Load and Resistance Factor Design (LRFD) method using	
Design Methodology	strength, service (extreme event) and fatigue limit states. For	LRFD,
Design Methodology	bridges designed by grid or 3-D analyses provide name and	FDOT
	version number of design software	
	Live Loads: HL-93 with Dynamic Load Allowance	LRFD 3.6
	Dynamic Load Allowance:	
	Deck joints: 75%:	I RED 3.6
	Fatigue and Fracture: 15%	
	All Other Limit States: 33%	
	Pedestrian Loads: N/A	LRFD 3.6
Design Loadings	36" single slope Traffic Railing: 430 plf	SDG 2.2
	42" single slope Traffic Railing: 580 plf	SDG 2.2
	Aluminum Pedestrian/Bicycle Bullet Railing: 10 plf	SDG 2.2
	Stay-In-Place Forms: 20 psf	SDG 2.2
	Unit Weight of Soil: 115 pcf	SDG 2.2
	Unit Weight of Reinforced Concrete: 150 pcf	SDG 2.2
	Unit Weight of Structural Steel: 490 pcf	LRFD 3.5
Seismic Provisions	Minimum bridge support lengths only	SDG 2.3
Wind Load	Design Wind Speed: 150 mph	SDG 2.4
Vehicular Collision Force	For intermediate piers	SDG 2.6
	Mean temperature: 70 °F	
	Temperature rise/fall (concrete only): 35 °F	SDG 2.7
Thermal Forces	Temperature rise/fall (concrete deck on steel girder): 40 °F	
	Coefficient of thermal expansion – concrete: 6.0 x 10 ⁻⁶ /°F	LRFD 5.4
	Coefficient of thermal expansion – steel: 6.5 x 10 ⁻⁶ /°F	LRFD 6.4
Environmental	Substructure: moderately aggressive	SDG 1.3
Classification	Superstructure: slightly aggressive	SDG 1.3
	Horizontal: 36 ft edge of travel lane & multilane ramps	FDM 215
Clearance	Horizontal: 24 ft edge of auxiliary lane & single lane ramps	FDM 215
	Vertical: 16.5 ft	FDM 260

4.3 Drainage Criteria

The design of stormwater management facilities for this project are governed by the rules and criteria set forth by the SJRWMD, SFWMD, and FDOT, where applicable. The following criteria was obtained from the 2018 SJRWMD's Permit Information Manual, 2016 Environmental Resource Permit Applicant's Handbooks, and 2019 FDOT Drainage Manual.

4.3.1 Water Quality and Pond Recovery

- Wet Detention (SJRWMD and SFWMD)
 - Water quality treatment Greater of 1" over the total basin or 2.5" over the added impervious area.
 - Recovery One-half the treatment volume within the first 24 to 30 hours after a storm event.
- Dry Retention (on-line) (SJRWMD Lake County Segment)
 - Treatment Greater of 0.5" over the total basin area or 1.25" over the added impervious area, plus an additional 0.5" over the total basin area.
 - Recovery Treatment volume within 72 hours after a storm event.
- Dry Retention (on-line) (SFWMD Orange County Segment)
 - Treatment Greater of 0.5" over the total basin area or 1.25" over the added impervious area.
 - Recovery Treatment volume within 72 hours after a storm event.

4.3.2 Water Quantity

- Closed Basins (SJRWMD Lake County Segment)
 - The post-development volume of direct runoff must not exceed the predevelopment volume of direct runoff for a 25-year frequency, 96-hour duration storm for systems discharging to land-locked lakes which are adjacent to properties of more than one ownership. These systems shall not cause an increase in the total pre-development flood stage.
- Closed Basins (SFWMD Orange County Segment)

• A storm event of a 25-year frequency, 3-day duration shall be used in computing off-site discharge rates.

4.3.3 Pond Design (FDOT Criteria)

CENTRAL FLORIDA

AUTHORITY

- Ponds shall be designed to provide a minimum 20-foot of horizontal clearance between the top edge of the normal pool elevation and the ROW line. Maintenance berm shall be at least 15-feet with a slope of 1:8 or flatter.
- Corners of ponds shall be rounded to provide an acceptable turning radius for maintenance equipment (30-foot minimum inside radius).
- At least 1-foot of freeboard is required above the maximum design stage of the pond below the front of the maintenance berm.

4.3.4 FEMA Floodplain Compensation

- The proposed project may not cause a net reduction in flood storage within the 10year floodplain.
- Structures shall cause no more than a one-tenth (0.1) of a flood increase in the 100-year flood elevation 500-feet upstream and no more than one foot of a flood increase in the 100-year flood elevation directly upstream.
- Proposed construction shall not cause a reduction in flood conveyance capabilities.
- Best Management Practices (BMP's) shall be employed to minimize velocity to avoid undue erosion.
- The design of encroachments shall be consistent with standards established by FEMA.

5 Alternatives Considered

It was previously established and summarized in Section 1 of this report, that a new transportation corridor is needed in order to meet the needs of this project. As indicated by the results shown in Section 2, the corridor area bounded by Alternative 20 on the north and Alternative 17 on the south was selected as the best option for implementation. This section provides a comparison of various alignments within the selected corridor area to determine the most efficient preferred Lake/Orange County Connector alternative. Based on the needs, existing conditions and anticipated impacts of the selected corridor as well as public/agency input, a comprehensive alternative development and evaluation process was initiated and conducted for the proposed project improvements as documented herein.

As illustrated on **Figure 5-1**, a multi-phase alternative development, evaluation and selection process was employed to properly assess all alternatives considered for the proposed improvements within the previously selected corridor. Essentially, three (3) different phases comprised the alternative selection process for the proposed project. A description of each of the three (3) different phases follows.

5.1.1 Phase 1 – Initial Evaluation

<u>The "No Build" alternative</u> is an alternative solution frequently used in PD&E studies that assumes the retainment of existing conditions. It is mostly used as a benchmark condition in order to compare the costs and benefits of implementing the proposed improvements to those incurred by continuing to use the existing facilities. In this case, the only existing east-west transportation facility (Schofield Road) within the project confines is inadequate not only in terms of future projected capacity needs but, more importantly, it would not provide the desirable redundancy in evacuation and emergency response potential nor the required additional freeway regional connectivity to between US 27 and SR 429 on the east. It is evident that, because of the reasons previously discussed in this document, adoption of this alternative would not solve many of the existing needs associated with the goals of this project. However, the "No Build" alternative will be maintained as a viable option providing an effective baseline condition by which other project alternatives will be compared throughout the project alternative selection process.

	DESCRIPTION					
1	PURPOSE	EVALUATION TECHNIQUE				
	DETERMINATION OF PROJECT SEGMENTS AND EVALUATION OF CORRIDOR OPTIONS	• FATAL FLAW ASSESSMENTS AND SCREENING • EVALUATION MATRIX WITH DESCRIPTIVE MEASURES				
	PRELIMINARY EVALUATION OF CONCEPTUAL SOLUTIONS TO GAUGE THE RELATIVE EFFECTIVENESS OF EACH ALTERNATIVE WITH RESPECT TO THE PROJECT OBJECTIVES	• FATAL FLAW ASSESSMENTS • EVALUATION MATRIX WITH DESCRIPTIVE MEASURES				
	REMAINING CONCEPTUAL ALTERNATIVES ARE FURTHER SCREENED TO SELECT A FINAL ALTERNATIVE	EVALUATION MATRIX WITH DESCRIPTIVE MEASURES				

<u>Build Alternatives:</u> Expressway extension options need to consider various major components of providing a new, multilane facility which includes the selection of a preferred corridor in conjunction with the most efficient typical section and alignment options as well as access point locations and configurations. The generation and selection of a preferred corridor was previously discussed in Section 2. The following sections provide a detailed discussion concerning other critical system components of the preferred extension option.

5.2 Phase 2 - Preliminary Conceptual Expressway Evaluation

This phase entailed the generation and evaluation of alternatives for the provision of an effective freeway connection within the previously selected corridor. Alternatives were generated for two (2) distinct system components: typical section options for the Lake/Orange County Connector mainline and interchange configuration options.

The first step in the evaluation of the mainline options was to breakdown the project into distinct segments. The segmental breakdown methodology was previously described and utilized in the development of the various corridor options (see Section 2.2.1, page 2-1). According to the previously obtained results, the project was divided into three distinct segments (see Figure 2-1).

5.2.1 Expressway Connector Typical Sections

This task entailed the generation and preliminary evaluation of various mainline typical section options. In view of the fact that traffic projections indicate a relatively modest traffic demand (see Section 1.2.2), the potential use of two-lane options were also initially considered. **Table 5-1** summarizes the overall characteristics of a "representative" divided two-lane facility versus a four-lane facility in the context of meeting the project needs. As shown in the table, the two-lane option would not fulfill the intended project needs, thus it was eliminated from further consideration.

Alternatives				
	2-LANE DIVIDED		4-LANE DIVIDED	
Parameters				
Safety	Even though the provision of a non-traversable median would virtually eliminate the fatal head-on crashes, it is a fixed object that is proximate to both directional lanes. This fixed object could be struck by errant vehicles traveling at high speeds and cause crashes. Previous statistical evidence clearly shows that from both a crash frequency and severity perspective, two lane divided highways are not as safe as four lane divided facilities.		Ample divided median and additional capacity contributes to a safer facility.	+
Traffic Service	In case of increasing traffic demand, provision of a divided non-traversable median on a two-lane roadway will worsen the level-of-traffic service. In addition, the provision of lower posted and enforced speeds could produce even greater driver frustration and an overall reduction in mobility. Provision of a divided median on a two-lane facility will increase the percentage of time that a vehicle will be delayed in a platoon trying to pass. In addition, forcing vehicles to go unusually slow on this type of low access/high mobility facility will result in lower average speeds, more delay and thus overall lower service quality.		The provision of a divided four- lane facility would provide acceptable levels of service, throughout the project segment and accommodate potential future growth.	+
Evacuation / Emergency Service	A divided non-traversable median will also worsen conditions in terms of hurricane evacuation or emergency services. With the non-traversable median concept, less continuous pavement is provided on each side. A crash or incident on the outbound side could easily disrupt the flow of traffic since vehicles are basically restricted by the median. Maneuvering large vehicles (RV's, trailers, trucks, etc.) within this narrower width will be more difficult. In addition, a lower design and posted speed facility with a narrow median will not be able to evacuate as many people as a higher speed, unconstrained facility.		A four-lane facility provides an adequate evacuation route and improves traffic safety during a mass evacuation or emergency situation.	+
Planning Consistency	The limited additional mobility provided by a two-lane facility extension is not consistent with the freeway/expressway functional classification envisioned in all previous/existing master plans.	-	Fully compatible with all previous/existing master plans.	+
Provide Effective Transit Support	Potentially provides only limited (due to capacity limitations) additional interagency transit service that could extend between Lake and Orange Counties.	-	Provides a realistic effective option for commuters and visitors traveling between the two counties.	+
Transportation Connectivity / Linkage	Provision of only marginal additional capacity limits desired additional connectivity between Lake and Orange Counties.	-	Enhances potential future freeway connectivity between Lake and Orange Counties and is consistent with the ultimate vision to provide an effective expressway connection from US 27 to SR 429.	+
Cost	Least expensive option in terms of initial capital expenditure, but will generate higher road user cost, as well as potential future expansion costs.	+	Most expensive option in terms of initial capital cost but offers reduced road user costs.	

Table 5-1: Two Lane VS Four Lane Comparisons

EGEND EGENERALLY POSITIVE EFFECT

GENERALLY NEGATIVE EFFECT

5.2.2 Conceptual Interchange Configuration Evaluation

The main objective of this task was to screen out all non-viable (inferior) interchange configurations and thus identify at an early stage what configuration(s) would work best at each interchange location. Summaries of these evaluations are illustrated on **Figures 5-2** through **5-4**. These descriptive matrices show various potential interchange configurations at each of the three interchange locations. It should be noted that several additional interchange options were conceptually developed and preliminarily evaluated for fatal flaws from a traffic and geometric standpoint. Several options were eliminated due to serious operational and/or constructability concerns.

It should be noted that when evaluating the potential interchanges along the Lake/Orange County Connector corridor one parameter that was considered was that the future interchanges should be at least 600 feet away from the existing/future parallel roadways in order to minimize potential detrimental traffic operational interfaces. These interchange locations have been analyzed based on the traffic models with areas of higher congestion and demand to alleviate the traffic from the neighboring existing/future local streets. The proposed interchange locations are as follows:

- Segment 1: Lake/Orange County Connector Interchange at US 27 (Begin Project)
- Segment 2: Lake/Orange County Connector at the Proposed CR 455 Extension Interchange
- Segment 3: Lake/Orange County Connector at SR 429 Interchange (End Project)

Figure 5-2: Lake / Orange County Connector at US 27 Interchange

to Orange County Connects	57
Duisa Carlo	
27 Mainline L/O County Connector NB US 27 to EB L/O County Connector WB L/O County Connector to SB US 27 SB US 27 to EB L/O County Connector WB L/O County Connector to NB US 27 WB L/O County Connector to NB US 27	「「「「「「」」」」
ving between loop ramps along the west side will affect the operational efficiency. op ramps will likely require the introduction of a longer and curvilinear the relocated portion of US 27.	
2	2.4
w operation for all traffic movements.	Ť
distance concerns between the two loop ramps along the west side of the	3.8 0
	3.6
constructability nor detrimental MOT implications expected.	+
acts to Lake Louisa State Park.	3.4
	2.2
lest impacts.	0
lest visual impacts.	0
mental impacts.	+.0
	2.8 0 5.6
pop ramps increases the required footprint but no poacts are anticipated.	0 3.6
Significant right-of-way impacts and weaving concerns.	
No	7.8

++ \$ + 0 00	LEGEND SUBSTANTIALLY POSITIVE EFFECT OR BEST ALTERNATIVE 1.0 GENERALLY POSITIVE EFFECT OR GOOD ALTERNATIVE 0.8 GENERALLY NO EFFECT OR MOBERATE ALTERNATIVE 0.6 Improvement of the state	ALTERNATIVES	Schoffield Tract Image: Construct of the second s		Schofield Tract Image: Constant of the second s	Schofu Lake C County C
	PARAMETERS		1 ACTACIANT I		2	3
42	GEOMETRIC / OPERATIONAL FEATURES		Elimination of left turn conflicts from CR 455 to the proposed connector is a major advantage. Would likely require the provision of one traffic signal in the future.	+	Generally simple and common geometric configuration that avoids the interweaving traffic flows that occur on other interchange configurations. Could eventually require the provision of two closely spaced signals or roundabouts when additional development occurs to the south.	D Design of WI closer to the Provides sign diamond opt
EERING	TRAFFIC SERVICE/MULTIMODAL EFFECTS	12	Provides effective vehicular traffic service and no significant detrimental effects for pedestrians and bicyclists along CR 455.	9.6	7. Generally good vehicular traffic service and no significant detrimental mobility effects for pedestrians and bicyclists along CR 455.	2 + Generally gou difficult for p
ENGIN	SAFETY	11	Generally safe configuration but could require the provision of at least one traffic signal.	8.8	8. Generally safe configuration although it might require the use of two traffic signals.	8 + Generally sat
	CONSTRUCTABILITY / M.O.T. IMPLICATIONS	8	No significant constructability nor detrimental MOT implications expected. Would require significant reconstruction to effectively provide for the potential CR 455 future extension to the south.	0.0	No significant constructability nor detrimental MOT implications expected. Fully compatible with potential CR 455 future extension to the south.	 No significan compatible v
NOMIC 30	IMPACTS TO SENSITIVE SITES	11	No expected impacts to sensitive sites.	+ 8.8	No expected impacts to sensitive sites.	+ No expected
CIOECO	IMPACTS TO APPROVED DEVELOPMENTS	11	Relatively moderate impacts.	0 6.6	Relatively minor impacts due to its limited footprint. 8.	+ Relatively mo
soc	AESTHETIC/VISUAL IMPACTS	8	Relatively moderate impacts.	0	Limited footprint reduces visual impacts. 6.	 Relatively mo 4
ENV.	ENVIRONMENTAL IMPACTS	16	No significant environmental impacts expected.	+	No significant environmental impacts expected.	+ No significan
T 12	CONSTRUCTION	6	Moderate cost but the potential requirement of at least one traffic signal will increase maintenance cost.	0	Generally moderate costs but the potential requirement of dual signals installations will increase maintenance cost.	Generally hig
cos	RIGHT-OF-WAY & RELOCATION IMPACTS	6	Moderate right-of-way impacts generally concentrated in the southeast quadrant of the interchange.	0	Relatively minor right-of-way impacts.	+ Moderate rig
	SUMMARY REMARKS	0	Generally effective option but not entirely compatible with potential future extension of CR 455 to the south.	3.0	4. Feasible option which generally maintains good operational conditions along CR 455.	5
	REMAINS VIABLE?		No	72.2	Yes	4

Figure 5-3: Lake / Orange County Connector at CR 455 Interchange

Schoffield Tract	tor y b y
a state of the sta	100
Orange Connector	2000
WB exit ramp requires the connector exit gore area to be he adjacent interchange to the east, a slight disadvantage. ignificant improvement in vehicular operational efficiency over the standard option since it only requires one signal installation.	0
	7.0
good vehicular traffic service but signal timing requirements generally make it r pedestrians and bicyclists to cross the intersection in relatively short time.	+
	8.8
safer than the standard diamond configuration in terms of vehicular traffic.	++
	11.0
ant constructability nor detrimental MOT implications expected. Fully e with potential CR 455 future extension to the south.	+
	6.4
ed impacts to sensitive sites.	+
	8.8 0
moderate impacts.	6.0
moderate impacts	0.0 0
moderate impacta.	
ant anvironmental impacts expected	4.8
ant environmental impacts expected.	12.0
higher cost due to significantly higher structural cost	
moner cost due to significantly fighter structural cost.	12
right-of-way impacts.	0
	3.6
Although a viable option, the relatively low traffic projections might not warrant its additional cost.	
No	71.2

Figure 5-4: Lake / Orange County Connector at SR 429 Interchange

Alternatives Considered | Prelir

the connector is long/ineffective and must weave with the EB Lake/Orange Co	and the second se
4 e but the connection from NB SR r is very indirect and involves a weaving segment. The connection between Schofield Co. Connector is provided at the adjacent Valencia Parkway Interchange.	-
n the SR 429/Independence and this alternative configuration.	.4 - .4
rimental MOT implications expected.	.4
s just west of Avalon Road and to the Horizon West Town Center and future Valencia	- .2
t due to extensive interchange footprint.	.2
3. mental impacts.	2
6. s of the existing interchange, the new configuration will require a high construction cos	4 t. 4
I future land uses.	- 2
fic, this alternative has weaving and safety concerns to the impacts to landfills	6
No	.0
ninary Engineering Report 5-6	

5.3 Phase 3 – Horizontal Alignment Considerations

5.3.1 Alignment Alternatives

In order to evaluate different alternative roadway concepts, it is also necessary to take into account their horizontal alignment or relative position within the chosen corridor. As shown on **Figure 5-5**, four distinct alignment choices were investigated as follows:

<u>Alternative 1</u> – This option generally follows the northern boundary of the preferred corridor throughout all three project segments. It commences with an interchange at US 27 approximately 2,000 feet north of the southern terminus of the South Bradshaw Road intersection and proceeds due east, crossing Lake Pike and Lake Island and providing an interchange at the proposed CR 455 extension. At this point, the alignment turns slightly to the northeast, crossing the Lake/Orange county line and terminating at the SR 429/Schofield Road interchange area where a new combined interchange is provided.

<u>Alternative 2</u> – This option commences with an interchange within the center portion of Segment 1 approximately 2,600 feet south of the north alignment. It then proceeds northeasterly generally between Lake Pike and Lake Adain and merges with the north alignment just west of Lake Island.

<u>Alternative 3</u> – This alignment generally follows the southern boundary of the preferred corridor. It commences with an interchange approximately 1,800 feet north of the Frank Jarrell Road intersection on US 27 and proceeds in a northeasterly direction until it merges with the previous two alignments just east of the Lake/Orange county line.

<u>Alternative 4</u> – This alignment also commences with an interchange within the center portion of Segment 1 approximately 600 feet south of Alternative 2. It then proceeds due east crossing the southern portion of Lake Adain and then turns slightly to the northeast generally following the southern boundary of the preferred corridor until it merges with the previous alignment.

Figure 5-5: Alignment Alternatives

5.3.2 Alignment Evaluation

Table 5-2 is a numerical descriptive matrix that evaluates the advantages and disadvantages of the four distinct alignment options. According to the table although the two northern alignment alternatives (Alternatives 1 and 2) cause only marginally less detrimental impacts in terms of wetlands, farmlands and mitigation, they have much greater negative impacts on the CEMEX Mine property. These impacts involve not only additional land acquisition but also negative repercussions on their future mining operations. In summary according to the results obtained, Alternatives 3 and 4 are generally superior than Alternatives 1 and 2.

The results of the evaluation show that Alternatives 3 and 4 are generally similar and the only difference between the two corridors occurs within Segment 1, thus additional factors must be considered for the selection of the preferred alternative. Alternative 3 received positive feedback from the public and major stakeholders. The Alternative 4 interchange with US 27 is slightly closer to the Lake Louisa State Park cabins and main entrance while the Alternative 3 interchange with US 27 is farther south. In addition, although much of the development in the area has not yet been approved, according to project stakeholders Alternative 3 would be most beneficial for future/planned developments in the area. Based on the feedback received from the public and major stakeholders during public meetings as well as during the Environmental and Project Advisory Group meetings (see Section 8 for more details), Alternative 3 was determined to be generally superior to Alternative 4 and is thus selected as the preferred alternative.

Table 5-2: Alternatives Evaluation

+++ + 0 -	SUBSTANT GENERAI GENERA GENERALL GENERAL	LEGENI IALLY POSITIVE EFFECT O LLY POSITIVE EFFECT O LLY NO EFFECT OR MOU Y NEGATIVE EFFECT OR LY NEGATIVE EFFECT O	D FOR BEST ALTERN R GOOD ALTERNA DERATE ALTERNA INFERIOR ALTERN R WORST ALTERN	NATIVE 1.0 ATIVE 0.0 TTIVE 0.0 NATIVE 0.0 NATIVE 0.1 NATIVE 0.1	0 8 6 4 2											
$\overline{\}$	IMPACTS		ENGI	INEERING		31	ENVIE	RONMI	ENTAL	18	SOCIO-ECONOMIC	13	PHYSICAL	6		
		FLOODPLAIN IMPA	CTS UTIL	LITY IMPACTS	CONSTRUCTABI	LITY	WETLAND IMPAC	CTS	FARMLAND IMPACT (NRCS)	rs	IMPACTS TO APPROVE DEVELOPMENTS (CEMEX N	D /INE)	NOISE & AESTHETICS/VISUAI IMPACTS	L	CONSTRUCT	101
ALTERNATIVES			12		6	13		14	Γ	4		13		6		
1		Approximately 67.1 acres of floodplain impacts	o Relatively impacts a throughou except at interchan transmise impacts a anticipate	y minor utility anticipated out the corridor t the US 27 nge where 35 sion pole are ed.	- Requires realignment of US 27 at the interchange location. Relatively minor issues anticipated	0	Approximately 16.3 acres of impacts to wetlands		Approximately 291.1 acres of impacts to Farmland of Local Importance	The second se	Impacts approximately 43 acres of the CEMEX mine and bisects the main Phase Two mining area potentially critically affecting their mining operations.		Relatively minor noise or aesthetic impacts anticipated to Lake Louisa State Park or the cabins	0	Approximately \$349M	
			7.2	2.	4	7.8		8.4		0.8		2.6		3.6		5
2		Approximately 74.1 acres of floodplain impacts	o Relatively impacts a throughou except at interchan transmiss impacts a anticipate	y minor utility anticipated out the corridor t the US 27 oge where 48 sion pole are ed.	- Requires realignment of US 27 at the interchange location. Relatively minor issues anticipated	o	Approximately 23.7 acres of impacts to wetlands	c	Approximately 293.2 acres of impacts to Farmland of Local Importance		Impacts approximately 43 acres of the CEMEX mine and bisects the main Phase Two mining area potentially critically affecting their mining operations.		Relatively minor noise or aesthetic impacts anticipated to Lake Louisa State Park or the cabins	o	Approximately \$358M	
		-											10-			_
			7.2	2	4	7.8		8.4	ΓΓ	0.8		2.6		3.6		5
3	,	Approximately 115.3 acres of floodplain impacts	- Relatively impacts a throughou except at interchan transmiss impacts a anticipate	y minor utility anticipated ut the corridor t the US 27 nge where 36 sion pole are ed.	- Requires realignment of US 27 at the interchange location. Relatively minor issues anticipated	o	Approximately 55.7 acres of impacts to wetlands		Approximately 224.7 acres of impacts to Farmland of Local Importance	0	Impacts approximately 33 acres of the CEMEX mine. Less impacts as compared to Alternatives 1 and 2 and avoids major impacts to the Phase Two mining area since it skirts the property's southern edge.	+	Relatively minor or no noise or aesthetic impacts anticipated to Lake Louisa State Park or the cabins	+	Approximately \$373M	
		Г	4.8	2	4	7.8	-	56	i r	24	1	10.4	Г	48		
4		Approximately 109.2 acres of floodplain impacts	- Relatively impacts a throughou except at interchan transmisse impacts a anticipate	y minor utility anticipated ut the corridor t the US 27 nge where 47 sion pole are ed.	- Requires realignment of US 27 at the interchange location. Relatively minor issues anticipated	0	Approximately 48.7 acres of impacts to wetlands		Approximately 231.7 acres of impacts to Farmland of Local Importance	0	Impacts approximately 33 acres of the CEMEX mine. Less impacts as compared to Alternatives 1 and 2 and avoids major impacts to the Phase Two mining area since it skirts the property's southern edge.	+	Relatively minor noise or aesthetic impacts anticipated to Lake Louisa State Park or the cabins	0	Approximately \$379M	-
			4.8	2.	4	7.8		5.6		2.4		10.4		3.6		1:

6 Future Traffic Analysis

Design traffic for the Lake/Orange County Connector was forecasted using the CFX Model 3.5 that was developed for the purpose of evaluating the proposed Lake/Orange County Connector Project, as described in the Project Traffic Analysis Report (PTAR), a supplemental document to this report. This section provides a summary of the traffic analysis completed. This section also provides the AADT and Directional Design Hour Volumes (DDHV) for the preferred alternative in opening year and design year.

6.1 Average Annual Daily Traffic (AADT)

The alternatives were broken into three traffic segments: Segment 1 runs from US 27 to the CR 455 interchange in the western end of the study area; Segment 2, or the middle section, runs from the CR 455 interchange to the Valencia Parkway interchange; and, Segment 3 which runs from the Valencia Parkway interchange to SR 429 on the eastern end of the study area.

Table 6-1 below provides the 2045 AADT for the four alternatives along with the weighted average AADT. The 2045 segment volumes were weighted using the distances of each segment to calculate the weighted average AADT. To compare the alternatives, each one was compared to "Alternative 1", which had the highest weighted average AADT. In terms of the ranking, "Alternative 2" becomes the second, followed by "Alternative 3" and "Alternative 4".

	Segment1	Segment2	Segment 3		Percent	
Alternatives North to South	US 27 to CR 455	CR 455 to Valencia CC	Valencia CC to SR 429	Weighted Average AADT	Compared to Best Alternative	Ranking
Alternative 1	25,700	37,000	25,000	29,800	100%	1
Alternative 2	24,500	36,800	25,100	29,000	97%	2
Alternative 3	24,900	35,000	23,900	28,600	96%	3
Alternative 4	23,900	34,300	23,400	27,700	93%	4

All of the alternatives are anticipated to attract similar future volumes, with average weighted AADT's between 27,700 and 29,800. **Figures 6-1 and 6-2** below provide the AADT for the 2045 No-Build and preferred alternative, respectively.

Figure 6-1: 2045 No-Build AADT

The Project has been coded in the network with a toll rate of \$0.18 per mile in 2018 dollars, consistent with average tolls on all new CFX facilities. The toll rates have been inflated to 2045 using the new toll policy of a compounded annual growth rate of one and one-half percent (1.5%), in accordance with the CFX Customer First toll rate policy, adopted by the CFX Board in January 2017. Model volumes were converted from peak-season average weekday traffic (PSAWDT) to annual average daily traffic (AADT) using the model output conversion factor of 0.98.

The daily roadway segment LOS analysis was conducted for the No-Build and Build conditions using the 2012 FDOT Quality and Level of Service Handbook tables. A summary of No-Build daily LOS is provided in **Table 6-2** and Build daily LOS is provided is provided in **Table 6-3**, respectively. As shown in the tables, all the roadway segments are projected to operate at LOS D or better in 2045 under both No-Build and Build conditions.

Roadway	Lanes	AADT	LOS
SR 429 N of Schofield Rd	6L	100,200	D
SR 429 S of Schofield Rd	6L	82,400	С
Avalon Rd N of Schofield Rd	4L	30,900	С
Avalon Rd S of Schofield Rd	4L	36,200	С
US 27 N of LOC	6L	46,300	В
US 27 S of LOC	6L	46,300	В
Schofield Rd E of SR 429	4L	26,700	С
Schofield Rd W of SR 429	4L	23,200	С

Table 6-2: No-Build 2045 Daily Roadway Segment LOS

Roadway	Lanes	AADT	LOS
SR 429 N of Schofield Rd	6L	107,500	D
SR 429 S of Schofield Rd	6L	85,200	С
Avalon Rd N of Schofield Rd	4L	27,000	С
Avalon Rd S of Schofield Rd	4L	32,200	С
US 27 N of LOC	6L	52,500	В
US 27 S of LOC	6L	49,400	В
Schofield Rd E of SR 429	4L	25,800	С
Schofield Rd W of SR 429	4L	23,100	С
CR 455 N of LOC	4L	22,000	С
CR 455 S of LOC	4L	14,600	С
Valencia Connector N of LOC	4L	15,600	С
Valencia Connector S of LOC	4L	8,400	С

Table 6-3: Build 2045 Daily Roadway Segment LOS

6.2 Design-Hour Traffic Forecasts and LOS

The DDHV for the traffic forecast year 2045 were developed for the No-Build and Build alternatives. DDHV's were developed using the K and D factors along with the forecasted AADTs and present-day intersection turning movement volumes.

The DDHVs for 2045 design year for the No Build and Build conditions are presented in **Figure 6-3 and Figure 6-4**, respectively.

Figure 6-3: 2045 Build AM & PM Peak Hour DDHVs

Figure 6-4: 2045 Build AM & PM Peak Hour DDHVs

The roadway segment LOS analysis was conducted in the AM Peak and PM Peak hours for the No-Build and Build conditions using the DDHVs. A summary of No-Build AM Peak Hour Segment LOS is provided in **Table 6-4** and No-Build PM Peak Hour Segment LOS is provided **Table 6-5**.

CENTRAL FLORIDA

AUTHORITY

Roadway	Lanes	Peak Hour Volume	LOS
SR 429 N of Schofield Rd	6L	5,515	Ш
SR 429 S of Schofield Rd	6L	4,275	С
Avalon Rd N of Schofield Rd	4L	1,565	С
Avalon Rd S of Schofield Rd	4L	1,955	D
US 27 N of LOC	6L	2,295	В
US 27 S of LOC	6L	2,295	В
Schofield Rd E of SR 429	4L	1,375	В
Schofield Rd W of SR 429	4L	1,255	С

Table 6-4: 2045 No-Build Peak Hour Roadway Segment LOS

Roadway	Lanes	Peak Hour Volume	LOS
SR 429 N of Schofield Rd	6L	5,915	Е
SR 429 S of Schofield Rd	6L	4,290	С
Avalon Rd N of Schofield Rd	4L	1,425	С
Avalon Rd S of Schofield Rd	4L	1,740	С
US 27 N of LOC	6L	2,960	С
US 27 S of LOC	6L	2,450	В
Schofield Rd E of SR 429	4L	1,535	В
Schofield Rd W of SR 429	4L	1,250	С
CR 455 N of LOC	4L	815	С
CR 455 S of LOC	4L	1,190	С
Valencia Connector N of LOC	4L	845	С
Valencia Connector S of LOC	4L	365	С

The intersection LOS analysis was also conducted for the AM Peak and PM Peak hours for each turning movement.

A summary of No-Build 2045 AM and PM Peak Hour Intersection LOS are provided in **Tables 6-6 and 6-7**, and Build 2045 AM and PM Peak Hour Intersection LOS are provided **Table 6-8 and 6-9**. The queue lengths for the 2045 Build AM and PM Peak conditions are presented in **Table 6-10**.

Location	cation SR 429 SB Ramps @ Schofield Road		SR 429 NB Ramps @ Schofield Road		Avalon Rd @ Schofield Road		SR 429 Ramps Indepen	SB @ New dence	SR 429 NB Ramps @ New Independence		
Movements	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	
EBL	-	-	-	-	42.5	D	-	-	81.4	F	
EBT	40.3	D	6.1	А	-	-	47.9	D	7.5	А	
EBR	5.1	А	-	-	5.7	А	8.1	А	-	-	
WBL	33.5	С	-	-	-	-	77.6	Е	-	-	
WBT	9.7	А	2.9	Α	-	-	9.6	А	19.7	В	
WBR	-	-	13.7	В	-	-	-	-	76.6	Е	
NBL	-	-	56.7	Е	53.5	D	-	-	95.1	F	
NBT	-	-	-	-	15.4	В	-	-	-	-	
NBR	-	-	10.6	В	-	-	-	-	64.1	F	
SBL	54.1	D	-	-	-	-	57.8	Е	-	-	
SBT	-	-	-	-	50.6	D	-	-	-	-	
SBR	7.5	Α	-	-	10.3	В	21.6	С	-	-	
All Movement	30.6	С	11.4	В	31.5	С	41.0	D	45.8	D	

Table 6-6: 2045 No-Build AM Peak Hour Intersection LOS

Location	SR 4 Ramp Schofie	29 SB s @ ld Rd	SR 4 Ramp Schofie	29 NB s @ Id Rd	Avalo @ Sch Ro	n Rd ofield d	SR 42 Ramps (Indeper	29 SB @ New ndence	SR 42 Ramps (Indeper	29 NB @ New ndence
Movements	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
EBL	-	-	-	-	54.9	D	-	-	66.6	E
EBT	56.1	Е	21.1	С	-	-	58.4	Е	24.5	С
EBR	7.2	А	-	-	11.1	В	8.3	А	-	-
WBL	43.4	D	-	-	-	-	103.2	F	-	-
WBT	30.7	С	2.3	А	-	-	24.8	С	36.0	D
WBR	-	-	4.8	А	-	-	-	-	9.1	А
NBL	-	-	64.5	E	72.2	Е	-	-	48.3	D
NBT	-	-	-	-	13.7	В	-	-	-	-
NBR	-	-	51.3	D	-	-	-	-	51.1	D
SBL	26.7	С	-	-	58.5	Е	30.7	С	-	-
SBT	-	-	-	-	11.1	В	-	-	-	-
SBR	33.8	С	-	-	-	-	48.3	D	-	-
All Movement	35.4	D	21.0	С	43.2	D	42.4	D	32.6	С

Table 6-7: 2045 No-Build PM Peak Hour Intersection LOS

Location	SR 429 SB Ramps @ Schofield Rd		SR 429 NB Ramps @ Schofield Rd		Avalon Rd @ Schofield Rd		SR 429 SB Ramps @ New Independence		SR 429 NB Ramps @ New Independ.		CR 455 @ LOC EB Ramps		CR 455 @ LOC WB Ramps		Future Valencia Rd @ LOC Ramps	
Movements	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
EBL	-	-	-	-	34.5	С	-	-	73.7	Е	43.7	D	-	-	36.9	D
EBT	37.4	D	12.3	В	-	-	41.7	D	7.5	Α	-	-	-	-	-	-
EBR	3.8	Α	-	-	4.1	Α	6.3	Α	-	-	7.2	Α	-	-	5.7	Α
WBL	27.3	С	-	-	-	-	75.3	E	-	-	-	-	38.3	D	-	-
WBT	7.7	Α	12.5	В	-	-	8.9	Α	19.0	В	-	-	-	-	-	-
WBR	-	-	8.0	Α	-	•	-	-	37.6	D	-	-	5.8	Α	-	-
NBL	-	-	43.7	D	50.5	D	-	-	95.1	F	-	-	72.2	Е	15.6	В
NBT	-	-	-	-	16.4	В	-	-	-	-	25.4	С	13.0	В	15.9	В
NBR	-	-	15.6	В	-	•	-	-	47.9	D	3.7	Α	-	-	-	-
SBL	55.6	E	-	-	-	-	56.6	E	-	-	76.5	Е	-	-	-	-
SBT	-	-	-	-	50.2	D	-	-	-	-	17.3	В	37.8	D	26.0	С
SBR	8.4	Α	-	-	7.7	Α	14.5	В	-	-	-	-	6.9	Α	3.7	Α
All Movement	26.8	С	13.7	В	28.7	С	37.0	D	33.3	С	22.4	С	29.6	С	20.8	С

Location	SR 42 Ramp Schofie	29 SB os @ eld Rd	SR 42 Ram Schofi	29 NB ps @ ield Rd	Avalo @ Scł R	n Rd nofield d	SR 4 Ramps Indepe	29 SB @ New ndence	SR 4 Ramps Indepe	29 NB @ New endence	CR 49 LOC Ran	55 @ EB nps	CR 4 LOC Rar	55 @ ; WB mps	Future Rd @ Rai	Valencia) LOC mps
Movements	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
EBL	-	-	-	-	38.4	D	-	-	73.1	E	40.7	D	-	-	50.3	D
EBT	46.8	D	25.0	С	-	-	68.7	E	26.9	С	-	-	-	-	-	-
EBR	6.0	А	-	-	6.3	А	8.9	А	-	-	18.8	В	-	-	9.8	Α
WBL	26.5	С	-	-	-	-	76.9	E	-	-	-	-	41.9	D	-	-
WBT	24.5	С	46.2	D	-	-	25.6	С	37.3	D	-	-	-	-	-	-
WBR	-	-	22.1	С	-	-	-	-	5.3	Α	-	-	5.4	Α	-	-
NBL	-	-	29.6	С	65.1	Е	-	-	44.0	D	-	-	79.7	Е	8.3	Α
NBT	-	-	-	-	13.2	В	-	-	-	-	24.0	С	11.8	В	7.9	Α
NBR	-	-	26.9	С	-	-	-	-	44.8	D	3.3	Α	-	-	-	-
SBL	32.3	С	-	-	-	-	35.5	D	-	-	72.0	Е	-	-	-	-
SBT	-	-	-	-	55.5	Е	-	-	-	-	23.8	С	40.0	D	15.9	В
SBR	31.2	С	-	-	9.4	А	45.1	D	-	-	-	-	5.8	А	2.6	А
All Movement	31.4	С	31.1	С	37.6	D	44.0	D	33.2	С	23.9	С	37.5	D	16.8	В

Table 6-9: 2045 Build PM Peak Intersection LOS

Intersection	Movement	AM Peak	PM Peak		
	EBT	509	380		
	EBR	55	56		
SR 429 SB Ramps @	WBL	286	178		
Schofield Rd	WBT	113	318		
	SBL	243	272		
	SBR	86	436		
	EBT	253	391		
CD 420 ND Domine @	WBT	202	401		
SR 429 NB Ramps @	WBR	196	m253		
Scholleid Ru	NBL	104	125		
	NBR	124	279		
	EBL	237	298		
	EBR	31	62		
Avalon Rd @	NBL	437	423		
Schofield Rd	NBT	325	142		
	SBT	289	591		
	SBR	103	151		
	EBL	81	57		
	EBR	80	136		
CR 455 @	NBT	261	172		
LOC EB Ramps	NBR	63	57		
	SBL	184	128		
	SBT	150	312		
	WBL	195	301		
	WBR	52	62		
CR 455 @	NBL	156	223		
LOC WB Ramps	NBT	132	52		
	SBT	188	306		
	SBR	40	47		
	EBL	241	194		
	EBR	44	45		
Future Valencia Rd @	NBL	64	60		
LOC Ramps	NBT	96	57		
	SBT	111	96		
	SBR	58	50		

Table 6-10: 95th Percentile Queue Lengths for 2045 Build

6.3 Traffic Recommendations

The intersections within the study area for the preferred alternative are analyzed with the following recommended improvements:

Due to the developing nature of the study area, the many unknowns regarding specific development patterns, and to ensure adequate rights of way are secured for future demand, the future interchange geometry proposed as a part of Lake/ Orange County Connector is recommended for the new interchanges at CR 455 Extension and Valencia Connector to include:

- Signalization
- Dual exclusive left turn lanes and single right turn lane at the ramp termini,
- Dual exclusive left turn lanes from cross street on to the receiving ramps, and
- On-ramps will need to accommodate two lanes of receiving traffic.

The traffic analysis shows that the Lake / Orange County Connector will help traffic conditions in the study area in the Build condition over the No-Build condition. The Lake / Orange County Connector provides opportunity for high-speed east-west travel between US 27 and SR 429 and provides much needed regional connectivity in this rapidly growing area of Central Florida.

7 Public Involvement

A public involvement program was developed and implemented for this Lake / Orange County Connector PD&E study. The program is documented in the Public Involvement Program (PIP) (see **Appendix E**).

Public information meetings began in June 2018 and have continued throughout the study process. The public involvement effort for this phase of the project included three (3) public meetings (the Public Hearing is scheduled for June 27, 2019), with three (3) additional Project Advisory Group (PAG) meetings and three (3) Environmental Advisory Group (EAG) meetings. **Table 7-1** lists the members of both groups and the respective company/organization. Additionally, a study website was developed and maintained throughout the entire study.

Group	Name	Company/Organization					
	Loren Bender	Valencia College					
	Julie Bendure	Floribra-Bradshaw					
	Chris Carmody	Apartment Association of Greater Orlando					
	Roger Chapin	Mears Transportation					
	Rex Clonts	Clonts Grove, Inc.					
	Diane Dethlefs	Orange County (Commisioner's Aide – District 1)					
	Chris Dougherty	S&ME (Consultant)					
	Jonathan Droor	Lennar Land Development					
	Stina D'Uva	West Orange Chamber of Commerce					
	Mark Griffith	Cra-Mar Groves					
DAC	Hugh Harling	East Central Florida Regional Planning Council					
PAG	Jose Hernandez	Orange County Utilities					
	Lisa Hill	Southern Hill Farms					
	David Hill	Southern Hill Farms					
	Rafael Jimenez	CEMEX					
	Herb Kahlert	Karl Corporation					
	Jim Karr	South Lake Crossing					
	Nick Lepp	MetroPlan Orlando					
	Mike Litvany	Hickory Grove LLC					
	Richard Levey	Hickory Grove LLC					
	Mark Massaro	Orange County Public Works					
	Brandon Matulka	Lake County (Agency for Economic Prosperity)					
	Tim McClendon	Lake County Planning & Zoning					

Table 7-1: PAG / EAG Group Members

Group	Name	Company/Organization						
	Renzo Natasi	Orange County (Community, Environmental and						
	Jimmy Roper	Land owner						
	Scott Ruland	Water Conserv II						
	Jenelle Schmidli	Greater Orlando Builders Association						
	Shannon Schmidt	City of Clermont						
	Lee Steinhauer	Greater Orlando Builders Association						
	Marcie Tinsley	Karl Corporation						
	Keith Trace	Mattamy Homes						
	Thomas Werner	City of Clermont						
	Ed Williams	City of Winter Garden						
	Cuqui Whitehead	City of Clermont						
	John Classe	Reedy Creek Improvement District						
	William Graf	South Florida Water Management District (SFWMD)						
	Mark Griffin	City of Clermont						
	Ron Hart	Lake County Water Authority						
	James Hollingshead	St. Johns River Water Management District (SFWMD)						
	Beth Jackson	Orange County, Environmental Protection Division						
	Aldin Mathews	Florida Park Service, Lake Louisa State Park						
	Chris Matson	Florida Department of Environmental Protection (FDEP) District 3						
EAG	Brandon Matulka	Lake County, Agency for Economic Prosperity						
	Lee Pulham	Reedy Creek Improvement District						
	Lex Veech	Property Owner						
	Casey Lyon	Florida Department of Transporation (FDOT) District 5						
	Ginny Jones	Florida Division of Historic Resources						
	Kathy Pagan	Lake County						
	Richard Mospens	Florida Fish and Wildlife Conservation Commission (FWC)						
	Cammie Dewey	St. Johns River Water Management District (SJRWMD)						
	Zakia Williams	US Fish and Wildlife						

Table 7-1: PAG / EAG Group Members

Appendix E includes sign-in sheets and meeting summaries from each of the meetings held to date. For a complete list of all public involvement activities and coordination meetings held see **Appendix E**. Exhibits and project information were provided for public

7-2

review and comment at each meeting. All input received served as valuable information that was taken into consideration for the refinement of the alternatives and the development of the preferred alternative. Representatives from the CFX were available at each meeting to discuss the project and answer questions.

Environmental Advisory Group (EAG) Meeting 1

An EAG meeting was held on July 30, 2018. The meeting was held to provide an opportunity for input from stakeholders, agencies and public participation. The project study was introduced as well as the study overview, history and purpose were presented. Sixteen (16) corridor alternatives were identified to the group. A total of 18 people including eight (8) staff members attended the meeting.

Project Advisory Group (PAG) Meeting 1

A PAG meeting was held on July 30, 2018. The meeting was held to provide an opportunity for input from stakeholders, agencies and public participation. The project study was introduced as well as the study overview, history and purpose were presented. Sixteen (16) corridor alternatives were identified to the group. A total of 44 people including 10 staff members attended the meeting.

Public Informational Meeting 1

A Public Informational Meeting was held on August 30, 2018. The meeting was an openhouse format and presented the Corridor Alternatives that were developed in order to obtain public feedback. The meeting provided an opportunity for residents, business owners, stakeholders and other interested parties to view the project alternatives with members of CFX and the consultant team to get answers to questions and responses to their concerns. One hundred and twenty-six (126) people attended the meeting and nine (9) comment sheets were received.

Environmental Advisory Group (EAG) Meeting 2

An EAG meeting was held on February 12, 2019. The meeting was held to provide an opportunity for input from stakeholders, agencies and public participation. The top four

corridor alternatives were presented at the EAG meeting. A total of 24 people including one (1) guest, and eight (8) staff members attended the meeting.

Project Advisory Group (PAG) Meeting 2

A PAG meeting was held on February 12, 2019. The meeting was held to provide an opportunity for input from stakeholders, agencies and public participation. The top four corridor alternatives were presented at the PAG meeting. A total of 41 people including ten (10) staff members attended the meeting.

Public Informational Meeting 2

A Public Informational Meeting was held on March 07, 2019. The meeting was an openhouse format and presented the top four alternatives in order to obtain public feedback. The meeting provided an opportunity for residents, business owners, stakeholders, and other interested parties to view the project alternatives with members of CFX and the consultant team to get answers to questions and responses to their concerns. A total of 54 attendees – 34 community members and 20 staff members attended the meeting and twelve (12) comments were received.

Environmental Advisory Group (EAG) Meeting 3

An EAG meeting was held on May 2, 2019. The meeting was held to provide an opportunity for input from stakeholders, agencies, and public participation. The evaluation of the top four alternatives and the preferred alternative (Alternative 3) was presented. Feedback from the EAG members was positive for the preferred alternative as it avoided the Schofield Tract and the Lake Louisa State Park's main entrance and cabins. A total of 24 people including 11 staff members attended the meeting.

Project Advisory Group (PAG) Meeting 3

A PAG meeting was held on May 2, 2019. The meeting was held to provide an opportunity for input from stakeholders, agencies, and public participation. The evaluation of the top four alternatives and the preferred alternative (Alternative 3) was presented. Feedback from the PAG members was positive for the preferred alternative as it had the least

impacts to the CEMEX Four Corners Sand Mine, farthest south to the Southern Hill Farms, and no direct impacts to the Water Conserv II. A total of 31 people including two (2) guests and nine (9) staff members attended the meeting.

Public Hearing

A Public Hearing was held on June 27, 2019. The hearing included an informal open house where participants were welcome to come at any time between 5:00 p.m. and 6:30 p.m. Nearly 100 people attended the public hearing, including three Lake County Commissioners, commissioners from Clermont and Windermere, and the Lake County Supervisor of Elections. Displays illustrating the preferred alternative, the evaluation matrix, the typical section, and other information were available for public review and comment. The public hearing also included a formal presentation with a public comment period. The meeting provided an opportunity for residents, business owners, stakeholders and other interested parties to view the preferred alternative with members of CFX and the consultant team to get answers to questions and responses to their concerns. Ninety (90) people attended the meeting with a total of fifteen (15) comments received. Written comments received as well as verbal statements made to project staff included the following concerns:

- Concerns of noise and visual impacts for the Hawksmoor development near the SR 429/Schofield Road interchange
- Concerns of noise and visual impacts for the owners of an ecolodge on Sawgrass Lake in Lake County
- Requests for continued coordination with property owners and developers being impacted
- The importance of maintaining access to Frank Jarrell Road to the east of US 27
- Several people expressed the need for another east-west connection between Lake and Orange counties, including some of the people who oppose this preferred alternative. They wanted an alternative that was farther from their property.

8 Preferred Alternative

After a comprehensive evaluation process, Alternative 3 was selected as being the most effective option and is illustrated on **Figure 8-1**. In general, this alternative was the result of combinations of the three project segments as well as various interchange configurations at each access point. For more details on Alternative 3, see the Concept Plans in **Appendix F**.

The typical section for the preferred alternative is depicted on Figure 8-2.

A brief description of the preferred alternative follows:

<u>Segment 1 (from US 27 [Begin Project] to Cook Road)</u>: Within Segment 1, the preferred alternative features a four-lane rural expressway typical section, with 330 feet of right-of-way, 12-foot travel lanes, 12-foot outside shoulders, an 88-foot divided median and a 94-foot border width. The section will feature grade separations in order to provide access to local facilities. The western interchange at US 27 provides direct connect ramps with free flow access to/from US 27. In order to avoid impacts to the abutting Lake Louisa State Park, a portion of US 27 will be slightly shifted to the east. Within this segment, the preferred alternative generally follows a northeast direction, thus avoiding impacts to Lakes Adain and Sawgrass.

<u>Segment 2 (from Cook Road to the Lake/Orange County Line)</u>: Within this segment, the preferred alternative continues with the same typical section previously described under Segment 1. The alignment generally shifts slightly southward just east of Cook Road in order to minimize impacts to the CEMEX Four Corners Sand Mine property. A full diamond interchange will be provided at the proposed CR 455 Extension facility to provide local access.

<u>Segment 3 (from the Lake/Orange County Line to the SR 429 and Schofield Road</u> <u>interchange [End Project])</u>: Within Segment 3, the preferred alternative continues the same typical section described under Segment 1. A partial interchange at the proposed Valencia Parkway will provide access to and from the west. At the SR 429 with Schofield Road interchange, direct connect ramps will provide access to/from both Northbound and Southbound SR 429.

Figure 8-2: Preferred Alternative Typical Section

8.1 Preliminary Roadway Design

8.1.1 Proposed Typical Sections

As illustrated on **Figure 8-2** the preferred alternative features a four-lane rural expressway typical section, with 330 feet of right-of-way, 12-foot travel lanes, 12-foot outside shoulders, an 88-foot divided median and a 94-foot border width. The typical section has the potential for future widening to a 10-lane typical section with five 12-foot travel lanes in each direction.

8.1.2 Horizontal Alignment

The mainline horizontal curves of the preferred alternative are described in Table 8-1. For additional information including horizontal curve information for the ramps, refer to the concept plans in Appendix F.

Location	Curve Name	PC STA	PI STA	D	Delta	L (ft)	R (ft)
Lake / Orange County Connector	ALT031	150+88.20	184+49.62	0'22'55"	25'15'43" (RT)	6,613.57	15,000
Mainline	ALT032	217+01.77	240+57.28	0'22'55"	17'50'56" (LT)	4,672.85	15,000

Table 8-1: Proposed Horizontal Curves

8.1.3 Vertical Alignment

A preliminary profile was developed to verify constructability and estimate construction costs. The existing ground was created from 1' contour Lidar maps, which were obtained

from Lake county and Orange county websites. The Lidar data does not provide an accurate survey of the existing ground. During the final design, a topographic survey should be performed for the project area to provide more accurate information. The vertical curves for the preferred alternative are described in **Table 8-2**. For additional information including the vertical curve information for the ramps refer to the concept plans in **Appendix F**.

Location	Curve Type	VPI Station (ft)	VPI Elevation	Grade (Back) %	Grade (Ahead) %	Length of Curve (ft)	к		
	Crest	135+00.00	133.05	+0.430	-0.340	1250	1623		
lake /	Sag	161+05.17	124.19	-0.340	+1.170	1250	828		
Orange	Crest	189+98.97	158.05	+1.170	-1.821	1400	468		
County	Sag	218+00.00	107.05	-1.821	+1.502	1400	421		
Connector	Crest	245+00.00	147.60	+1.502	-1.791	1800	547		
Mainline	Sag	273+00.00	97.45	-1.791	+1.317	2800	901		
	Sag	307+50.00	142.90	+1.317	+-0.887	2000	4649		

Table 8-2: Proposed Vertical Curves

8.1.4 Bicycle and Pedestrian Accommodations

Lake / Orange County Connector is proposed as a limited access facility; therefore, no bicycle nor pedestrian facility will be provided along the Lake / Orange County Connector.

8.1.5 Potential Design Exceptions and Variations

A border width variance may be required for the proposed 88-foot border width. According to the FDOT Design Manual a new construction limited access facility requires a border width of 94-feet. No additional design exceptions or variations are anticipated.

8.1.6 Access Management

Administrative Rule 14-97 establishes the seven classifications for state highways that contain separation standards for access features as stated in the FDOT Median Handbook. Access Class 1 applies limited access facilities, which do not provide direct property connections. Since the proposed Lake / Orange County Connector is a new limited access facility, the proposed access classification is considered Access Class 1.

The Lake / Orange County Connector includes four proposed interchanges: direct connect ramps at US 27, a diamond interchange at the proposed CR 455 Extension, a partial interchange to and from the west at the proposed Valencia Parkway, and a

systems interchange at SR 429. The proposed CR 455 Extension is currently in the PD&E Phase and the exact location of the tie-in to Schofield Road is currently being determined. Coordination with Lake County will continue during final design for the final location of the CR 455 Extension.

For median openings along the cross streets at interchange locations the standard distance to the first full median opening shall be at least 2,640 feet as measure from the end of the taper of the off ramp. A meeting was held with FDOT District 5 staff on August 24, 2018 to coordinate efforts and access along US 27. FDOT staff indicated that the FDOT preference is a direct connect interchange that allows free-flow movement at US 27. A new signal at US 27 is undesirable given the high speeds (55 MPH posted speed) along US 27.

It should also be noted that there are planned developments (e.g. Olympus and Ridgeview) with proposed access to US 27 north of the preferred alternative. Coordination between FDOT and future developments will continue in final design.

8.1.7 Lighting

Preliminarily, lighting will be provided at the interchange locations. A lighting analysis will be done in final design to determine lighting requirements.

8.1.8 Signing

Signing will be provided throughout the preferred alternative. See **Appendix F** for a preliminary conceptual signing layout.

8.1.9 Proposed ITS Devices

ITS network elements to be installed are expected to include: new DMS, CCTV, TMS, DCS, Wrong Way Signs, power subsystem and fiber optic network. Please note that the preliminary ITS estimate was based on a high-level engineering design and the final quantities should be determined at the time of design. As shown on **Figure 8-3** the ITS equipment and conduit are recommended to be installed in the following locations:

<u>DMS</u>: DMS will provide the motorists with the travel information, such as travel time, amber alerts, traffic incident, and others. The signs will be strategically placed in advance of off ramps to allow the motorist to decide to remain on the highway or find an alternative route.

<u>CCTV Cameras</u>: The purpose of the CCTV cameras is to provide 100% comprehensive video coverage along the Lake/ Orange County Connector. The cameras will also cover mainline, side streets, and view the DMS to verify that the correct information is being displayed. The cameras will be placed using approximately one-mile spacing.

<u>TMS</u>: The Traffic Monitoring Stations will provide volume, lane occupancy, and speed information in multiple detection zones. Each vehicle detection device will collect and process the data on a lane-by-lane basis. The vehicle detectors will automatically identify and detect speed fluctuations along the road and send an alert to the operator(s) at the Regional Traffic Management Center (RTMC). TMS sensors will be installed at every on/off ramp and in between the interchanges.

<u>DCS</u>: The DCS are used in travel time analysis by detecting transponders. The DCS sites will be installed at every on/off ramp and will collect accurate travel time information to be disseminated to the traveling public via DMS signs.

<u>Underground Power Distribution System</u>: An underground power distribution system with Uninterrupted Power Supply (UPS) backup will be included as part of the analysis for the new SR 429 to US 27 connection. For the purpose of this study, one power service per HUB location will be considered. The future design firm shall be responsible for verifying the proposed locations, determining available power sources and voltages, and coordinating with Utility Companies. The electrical design will consist of commercially available power sources. Disconnects and service meters are to be installed at all locations.

<u>Wrong way signs</u>: The "Wrong Way" signs are equipped with flashing beacons to prevent wrong-way drivers from entering CFX's expressway system. The devices also send out alerts to the RTMC where operators can post wrong-way driving alerts on overhead Dynamic Message Signs when these events are detected. The Wrong Way signs are included in the cost estimate for every on ramp within the extension.

The design and cost estimate for the ITS system is based on the typical section described in previous sections.

8.1.10 ITS Cost Estimate

As part of this study, a high-level cost analysis was performed to determine the preliminary funding requirements for the replacement of existing ITS infrastructure as well as for the deployment of the new ITS devices.

There are several items that will be included to ensure a fully functional system and efficient ITS devices. The capital cost pricing used in this calculation was a combination of the CFX Long Range Estimate and past projects' Engineer's Estimates. For the estimated cost, the Fiber Optic Network (FON) cost was estimated for the mainline on a per mile basis. The ITS infrastructure has been estimated based on interchanges. The 4 proposed interchanges are US 27, CR 455, Valencia Parkway and SR 429. Below is a list of the primary items for the ITS equipment/devices.

- Fiber Optic Cable and Hardware
- Pull Boxes
- Conduit

- Power Services, Service Wire and Conduit for new power connections
- CCTV Cameras

CENTRAL FLORIDA

AUTHORITY

- Data Collection Sensors (DCS)
- Traffic Monitoring Stations (TMS)
- Dynamic Message Signs (DMS)
- Wrong Way Signs
- Field Ethernet Switches
- Cabinets

Note: This estimate does not include any tolling items.

The overall engineer's estimate capital cost is \$3,875,541. For a detailed cost breakdown and item descriptions, please see **Appendix G**.

8.1.11 Structural Analysis

A total of 20 new bridges are proposed within the Lake / Orange County Connector and are shown on **Figure 8-4**. There are 11 bridges that will consist of steel plate girder superstructures due to their long spans (over 200') and/or their sharp curves. The remaining 9 bridges have medium length spans (less than 125') and will consist of prestressed concrete Florida-I Beams superstructures. The substructure types will vary by location and will include Pile Bents, Multi-Column Piers, Hammerhead Piers, and Intermediate Pier with straddle caps. The conceptual structural plans for the proposed structures is presented in **Appendix F**. A summary of the proposed structures is

Bridge 1: US 27 SB Ramp to Connector EB over US 27

This flyover bridge carries the US 27 SB off-ramp to Connector EB over US 27. It consists of a 15-foot single lane ramp, a 9-foot inside shoulder, a 6-foot outside shoulder, and 2-42" Single Slope railings for a total bridge width of 33.0 feet out to out. The overall length of this bridge is 651 feet, it has 3 spans, and it is supported on curved steel plate girders with a maximum span length of 249 feet. Due to the alignment curvature and the anticipated beam depth of over 6 feet, steel tub girders could also be a viable alternative to be investigated in final design. The span lengths were established by having shorter

approach spans that are in the range of 70% to 80% of the main span. This span arrangement will provide efficient structure for final design. The intermediate piers will consist of straddle pier caps, spanning over US 27, due to the lack of horizontal clearance at US 27 and the geometric layout of the ramp in relation to US 27. The end bents will consist of pile bents with wrap around MSE walls. Stopping sight distance of 465 feet for shoulder widths based on assumed 5% maximum longitudinal grades with a horizontal sideline offset of 16.41 feet that is measured from the centerline of the inside lane.

Bridge 2: Connector WB Ramp to US 27 SB over US 27 and pond

This flyover bridge carries the Connector WB off-ramp to US 27 SB over US 27, Pond, and US 27 SB to Connector EB off-ramp. It consists of a 15-foot single lane ramp, a 9foot inside shoulder, a 6-foot outside shoulder, and 2-42" Single Slope railings for a total bridge width of 33.0 feet out to out. The overall length of this bridge is 2205 feet, it has 11 spans, and it is supported on curved steel plate girders with a maximum span length of 206 feet. Due to the alignment curvature and the anticipated beam depth of over 6 feet, steel tub girders could also be a viable alternative to be investigated in final design. The span lengths were established by having shorter approach spans that are in the range of 70% to 80% of the main spans. This span arrangement will provide efficient structure for final design. The intermediate piers will consist of hammerhead or multi-column piers over the water, and straddle pier caps, spanning over US 27, due to the lack of horizontal clearance at US 27 and the geometric layout of the ramp in relation to US 27. The end bents will consist of pile bents with wrap around MSE walls. Stopping sight distance of 465 feet for shoulder widths based on assumed 5% maximum longitudinal grades with a horizontal sideline offset of 16.41 feet that is measured from the centerline of the inside lane.

		Po	ssible Superst	ructure		Possible Sul	bstructure	Tatal					Base					
Bridge No.	Bridge Location/Description	Anticipated Type	Min. CL Radius (FT)	Max. Span Length (FT)	Approximate Depth (FT)	Anticipated Type	Approximate Depth below Superstructure (FT)	Superstructure Depth (FT)	No. of Spans	Total Bridge Length (FT)	Bridge Width (FT)	Deck Area (SF)	Bridge \$/SF (SDG 9.2.3)	% Increase for Special Construction	Bridge \$/SF	Approach Slab Area (SF)	Approach Slab \$/CY	Estimated Cost
1	US27 SB Ramp to Connector EB over US27	Curved Steel Plate Girders	1643.00	249	7.97	Straddle / Pile Bents	2.00	9.97	3	651	33.00	21483	170	20%	204	1980	600	\$ 4,426,532
2	Connector WB Ramp to US27 SB over US27 and pond	Curved Steel Plate Girders	1643.00	206	6.59	Straddle / Pile Bents	2.00	8.59	11	2204	33.00	72732	170	20%	204	1980	600	\$ 14,881,328
3A	Connector WB over Sawgrass Lake Wetland area	Prestressed Concrete Florida I Beams	N/A	103	4.75	Piers / Pile Bents	0.00	4.75	24	2467	50.67	124995	145	3%	150	3040	600	\$ 18,816,756
3B	Connector EB over Sawgrass Lake Wetland area	Prestressed Concrete Florida I Beams	N/A	103	4.75	Piers / Pile Bents	0.00	4.75	24	2467	50.67	124995	145	3%	150	3040	600	\$ 18,816,756
4A	Connector WB over Cook Road	Prestressed Concrete Florida I Beams	15065.00	126	5.50	Pile Bents	0.00	5.50	1	126	50.67	6384	145	0%	145	3040	600	\$ 993,236
4B	Connector EB over Cook Road	Prestressed Concrete Florida I Beams	14935.00	126	5.50	Pile Bents	0.00	5.50	1	126	50.67	6384	145	0%	145	3040	600	\$ 993,236
5A	Connector WB over CR 455	Prestressed Concrete Florida I Beams	14935.00	80	4.00	Piers / Pile Bents	0.00	4.00	2	159	50.67	8056	145	0%	145	3040	600	\$ 1,235,676
5B	Connector EB over CR 455	Prestressed Concrete Florida I Beams	15065.00	80	4.00	Piers / Pile Bents	0.00	4.00	2	159	50.67	8056	145	0%	145	3040	600	\$ 1,235,676
6A	Connector WB over Valencia Parkway Ramp	Steel Plate Girders	N/A	203	8.12	Pile Bents	0.00	8.12	1	203	50.67	10285	135	0%	135	3040	600	\$ 1,456,076
6B	Connector EB over Valencia Parkway Ramp	Steel Plate Girders	N/A	212	8.48	Pile Bents	0.00	8.48	1	212	50.67	10741	135	0%	135	3040	600	\$ 1,517,636
7A	Connector WB over Valencia Parkway	Prestressed Concrete Florida I Beams	1923.00	82	5.50	Multicolumn / Pile Bents	0.00	5.50	2	162	48.53	7862	145	0%	145	3055	600	\$ 1,207,859
7B	Connector EB to SR 429 NB over Valencia Parkway	Prestressed Concrete Florida I Beams	N/A	83	4.75	Multicolumn / Pile Bents	0.00	4.75	2	165	29.67	4895	145	0%	145	1780	600	\$ 749,331
7C	Connector EB to SR 429 SB over Valencia Parkway	Prestressed Concrete Florida I Beams	1643.00	78	4.00	Multicolumn / Pile Bents	0.00	4.00	2	155	32.67	5063	145	0%	145	1960	600	\$ 777,739
8	Connector EB over SR 429 NB Ramp to Connector WB	Steel Plate Girders	N/A	164	5.25	Straddle / Pile Bents	2.00	7.25	2	327	29.67	9701	135	0%	135	1780	600	\$ 1,349,191
9	SR 429 SB Ramp to Connector WB over Schofield Rd	Curved Steel Plate Girders	1917.00	218	8.72	Pile Bents	0.00	8.72	1	218	31.00	6758	155	20%	186	1860	600	\$ 1,298,321
10	SR 429 SB Ramp to Connector WB over SR 429 SB off Ramp	Curved Steel Plate Girders	1917	167	5.34	Straddle / Pile Bents	2.00	7.34	2	333	31.00	10323	170	20%	204	1860	600	\$ 2,147,225
11	Connector EB Ramp to SR 429 NB over Schofield Rd and SR 429	Curved Steel Plate Girders	2299.5	275	8.80	Piers / Pile Bents	0.00	8.80	4	1007	30.00	30210	165	30%	215	1800	600	\$ 6,535,150
12	Connector EB Ramp to SR 429 NB over SR 429 NB on Ramp	Curved Steel Plate Girders	2299.50	262	10.48	Pile Bents	0.00	10.48	1	262	30.00	7860	155	20%	186	1800	600	\$ 1,501,960
13	SR 429 NB Ramp to Connector WB over SR 429	Curved Steel Plate Girders	1917	229	7.33	Piers / Pile Bents	0.00	7.33	3	620	31.00	19220	165	20%	198	1860	600	\$ 3,846,893
14	SR 429 NB Ramp to Connector WB over SR 429 NB off Ramp	Steel Plate Girders	1917.5	227	9.08	Pile Bents	0.00	9.08	1	227	30.00	6810	135	20%	162	1800	600	\$ 1,143,220
Notes: 1. Bridge le	Steps: Total Estimated Bridge Cost = \$ 84,929,797 Bridge lengths and superstructure depths have been rounded up for estimation purposes and may not match the Plan Sheets and Typical Sections. Total Bridge Area (SF) = 502,813																	

Table 8-3: Proposed Bridges

1. Bridge lengths and superstructure depths have been rounded up for estimation purposes and may not match the Plan Sheets and Typical Sections.

2. % Increase for Special Construction per SDG 9.2.3, add 20% for construction over traffic and 3% for structures over open water; Add 30% for High Level flyovers.

169

Total Bridge Area (SF) = Average Cost/SF = \$

Figure 8-4: Location of Proposed Bridges

Bridges 3A & 3B: Connector WB & EB over Lake Sawgrass Wetland area

These twin bridges carry the Connector WB and EB mainline over Sawgrass Lake Wetland area. Each bridge consists of 2-12' lanes, 2-12' shoulders, and 2-36" Single Slope railings for a total bridge width of 50.67 feet out to out. The overall length of each bridge is 2467 feet, each bridge has 24 spans with equal lengths of 103 feet and it is supported on Florida-I Beams. The intermediate bents will consist of pile bents and the end bents will consist of pile bents with wrap around MSE walls. To minimize wetland impact during construction, the proposed bridges can be built from a temporary trestle built in the median or build the proposed bridges using the top down construction method. The temporary trestle would also require top down construction. The top construction method involves a span by span methodology wherein the first span is built from the approach roadway then the following span is constructed from a previously constructed span. In this method, the crane will be placed on top of the previously placed span which will eliminate adding temporary fill in the wetland area.

Based on supplemental preliminary borings performed for the study, it appears the soils are capable of supporting standard roadway embankment construction following proper subgrade preparation. However, highly organic (organic content > 20%) soils were encountered within the upper 2 to 8 feet along the portion of the alignment that traverses the swamp area. Standard removal and replacement of organic soils with "select" backfill may be difficult due to the depths of organic soils (up to 8 feet) and water levels in the swamp area (up to 7 feet deep). Subgrade preparation will likely consist of a combination of removal and replacement of organic soils where feasible based on water levels with possible surcharge embankments or other ground remediation techniques. Further laboratory testing including consolidation testing may also be required on the deeper deposits of organic silt encountered to evaluate the potential for long term settlement based on final embankment heights and roadway design. Based on the subsurface soil conditions encountered at the boring locations, competent bearing layers of dense to very dense sands with variable silts content (SP/SP-SM/SM) were encountered at depths of approximately 40 to 75 feet below the existing mudline within the swamp area. Driven concrete and steel piles are widely used and proven foundation system in these subsurface soil conditions. However, due to the corrosive nature of the soils encountered

at the boring locations, steel piles may be an undesirable foundation alternative and sacrificial steel would be required.

Additional analysis will be performed during final design to determine the most cost effective solution for this area.

Bridges 4A & 4B: Connector WB & EB over Cook Road

These twin bridges carry the Connector WB and EB mainline over Cook Rd. Each bridge consists of 2-12' lanes, 2-12' shoulders, and 2-36" Single Slope railings for a total bridge width of 50.67 feet out to out. The overall length of each bridge is 126 feet, each bridge has one span and it is supported on Florida-I Beams. The end bents will consist of pile bents with wrap around MSE walls.

Bridges 5A & 5B: Connector WB & EB over CR 455

These twin bridges carry the Connector WB and EB mainline over CR 455. Each bridge consists of 2-12' lanes, 2-12' shoulders, and 2-36" Single Slope railings for a total bridge width of 50.67 feet out to out. The overall length of each bridge is 159 feet, each bridge has two spans with similar lengths of about 79 feet and it is supported on Florida-I Beams. The intermediate pier will consist of a hammerhead or a multi-column pier and the end bents will consist of pile bents with wrap around MSE walls.

Bridges 6A & 6B: Connector WB & EB over Valencia Parkway Ramp

These two bridges carry the Connector WB and EB mainline over Valencia Parkway Ramp. Each bridge consists of 2-12' lanes, 2-12' shoulders, and 2-36" Single Slope railings for a total bridge width of 50.67 feet out to out. The overall length of each bridge is 203 feet and 212 feet respectively, each bridge has one span, and is supported on straight steel plate girders. The end bents will consist of pile bents with wrap around MSE walls.

Bridge 7A: Connector WB over Valencia Parkway

This bridge carries the Connector WB mainline and SR 429 NB off-ramp to Connector WB over Valencia Parkway. It consists of a 2-12' lanes, a 6-foot inside shoulder, a 12-foot outside shoulder, a variable width median gore area, and 2-36" Single Slope railings for a total variable bridge width of 44.67 feet to 55.42' out to out. The overall length of this

bridge is 162 feet, it has two spans with a maximum span of 82 feet, and it is supported on Florida-I Beams with variable beam spacings. Due to the variable bridge width and curvature, a combination of curved and tangent steel plate girders could also be a viable alternative to be investigated in final design. The intermediate pier will consist of a hammerhead or a multi-column pier and the end bents will consist of pile bents with wrap around MSE walls. Stopping sight distance of 465 feet for shoulder widths based on assumed 5% maximum longitudinal grades with a horizontal sideline offset of 14.08 feet that is measured from the centerline of the inside lane.

Bridge 7B: Connector EB to SR 429 NB over Valencia Parkway

This bridge carries the Connector EB mainline over Valencia Parkway. It consists of a 12foot single lane ramp, two 6-foot shoulders, and 2-36" Single Slope railings for a total bridge width of 29.67 feet out to out. The overall length of this bridge is 165 feet, it has two spans with a maximum span of 83 feet, and it is supported on Florida-I Beams. The intermediate pier will consist of a hammerhead or a multi-column pier and the end bents will consist of pile bents with wrap around MSE walls.

Bridge 7C: Connector EB to SR 429 SB over Valencia Parkway

This bridge carried the Connector EB off-ramp to SR 429 SB over Valencia Parkway. It consists of a 15-foot single lane ramp, a 9-foot inside shoulder, a 6-foot outside shoulder, and 2-36" Single Slope railings for a total bridge width of 32.67 feet out to out. The overall length of this bridge is 155 feet, it has two spans with a maximum span of 78 feet, and it is supported on Florida-I Beams. The intermediate pier will consist of a hammerhead or a multi-column pier and the end bents will consist of pile bents with wrap around MSE walls.

Bridge 8: Connector EB over SR 429 NB Ramp to Connector WB

This bridge carries the Connector EB off-ramp over the SR 429 NB off-ramp to Connector WB. It consists of a 12-foot single lane ramp, two 6-foot shoulders, and 2-36" Single Slope railings for a total bridge width of 29.67 feet out to out. The overall length of this bridge is 327 feet, it has two spans with equal lengths of 164 feet, and it is supported on straight steel plate girders. The intermediate pier will consist of a straddle pier cap, spanning over

SR 429 NB off-ramp to Connector WB, due to the geometric layout of the ramp in relation to SR 429 NB off-ramp. The end bents will consist of pile bents with wrap around MSE walls.

Bridge 9: SR 429 SB Ramp to Connector WB over Schofield Road

This flyover bridge carries the SR 429 SB off-ramp to Connector WB off-ramp over Schofield Rd. It consists of a 15-foot single lane ramp, a 7-foot inside shoulder, a 6-foot outside shoulder, and 2-42" Single Slope railings for a total bridge width of 31.0 feet out to out. The overall length of this bridge is 218 feet, it has one span, and it is supported on curved steel plate girders. Due to the alignment curvature and the anticipated beam depth of over 6 feet, steel tub girders could also be a viable alternative to be investigated in final design. The end bents will consist of pile bents with wrap around MSE walls. Stopping sight distance of 465 feet for shoulder widths based on assumed 5% maximum longitudinal grades with a horizontal sideline offset of 14.08 feet that is measured from the centerline of the inside lane.

Bridge 10: SR 429 SB Ramp to Connector WB over SR 429 SB off-ramp

This flyover bridge carries the SR 429 SB off-ramp to Connector WB over SR 429 SB offramp to Schofield Rd. It consists of a 15-foot single lane ramp, a 7-foot inside shoulder, a 6-foot outside shoulder, and 2-42" Single Slope railings for a total bridge width of 31.0 feet out to out. The overall length of this bridge is 333 feet, it has 2 spans, and it is supported on curved steel plate girders with a maximum span length of 167 feet. The intermediate pier will consist of a straddle pier cap, spanning over SR 429 SB off-ramp to Schofield Rd, due to the geometric layout of the ramp in relation to SR 429 SB off-ramp. The end bents will consist of pile bents with wrap around MSE walls. Stopping sight distance of 465 feet for shoulder widths based on assumed 5% maximum longitudinal grades with a horizontal sideline offset of 14.08 feet that is measured from the centerline of the inside lane.

Bridge 11: Connector EB Ramp to SR 429 NB over Schofield Road and SR 429

This flyover bridge carries the Connector EB off-ramp to SR 429 NB over Schofield Rd and over SR 429. It consists of a 15-foot single lane ramp, two 6-foot shoulders, and 2-

42" Single Slope railings for a total bridge width of 30.0 feet out to out. The overall length of this bridge is 1007 feet, it has 4 spans, and it is supported on curved steel plate girders with a maximum span length of 275 feet. Due to the alignment curvature and the anticipated beam depth of over 6 feet, steel tub girders could also be a viable alternative to be investigated in final design. The span lengths were established by having shorter approach spans that are in the range of 70% to 80% of the main spans. This span arrangement will provide efficient structure for final design. The intermediate piers will consist of hammerhead or multi-column piers. The end bents will consist of pile bents with wrap around MSE walls.

Bridge 12: Connector EB Ramp to SR 429 NB over SR 429 NB on-ramp

This flyover bridge carries the Connector EB off-ramp to SR 429 NB over SR 429 NB onramp from Schofield Rd. It consists of a 15-foot single lane ramp, two 6-foot shoulders, and 2-42" Single Slope railings for a total bridge width of 30.0 feet out to out. The overall length of this bridge is 262 feet, it has one span, and it is supported on curved steel plate girders. Due to the alignment curvature and the anticipated beam depth of over 6 feet, steel tub girders could also be a viable alternative to be investigated in final design. The end bents will consist of pile bents with wrap around MSE walls.

Bridge 13: SR 429 NB Ramp to Connector WB over SR 429

This flyover bridge carries the SR 429 NB off-ramp to Connector WB over SR 429 and over SR 429 SB on-ramp from Schofield Rd. It consists of a 15-foot single lane ramp, a 7-foot inside shoulder, a 6-foot outside shoulder, and 2-42" Single Slope railings for a total bridge width of 31.0 feet out to out. The overall length of this bridge is about 620 feet, it has 3 spans, and it is supported on curved steel plate girders with a maximum span length of 229 feet. Due to the alignment curvature and the anticipated beam depth of over 6 feet, steel tub girders could also be a viable alternative to be investigated in final design. The span lengths were established by having shorter approach spans that are in the range of 70% to 80% of the main span. This span arrangement will provide efficient structure for final design. The intermediate piers will consist of hammerhead or multi-column piers. The end bents will consist of pile bents with wrap around MSE walls. Stopping sight distance of 465 feet for shoulder widths based on assumed 5% maximum longitudinal

grades with a horizontal sideline offset of 14.08 feet that is measured from the centerline of the inside lane.

Bridge 14: SR 429 NB Ramp to Connector WB over SR 429 NB off-ramp

This bridge carries the SR 429 NB off-ramp to Connector WB over SR 429 NB off-ramp to Schofield Rd. It consists of a 15-foot single lane ramp, two 6-foot shoulders, and 2-42" Single Slope railings for a total bridge width of 30.0 feet out to out. The overall length of this bridge is 227 feet, it has one span, and it is supported on curved steel plate girders. Due to the anticipated beam depth of over 6 feet, steel tub girders could also be a viable alternative to be investigated in final design. The end bents will consist of pile bents with wrap around MSE walls.

Bridge Foundations

This project did not include soil borings at the bridge locations for the PD&E phase. Preliminarily, possible foundation types for the bridges include 18-inch and 24-inch square prestressed concrete piles, steel H-piles, steel pipe piles, and drilled shafts. Selection of the foundation system should give significant consideration for systems that reduce the potential for vibration and noise impacts at locations within the limits defined in the FDOT Standard Specifications for Road and Bridge Construction.

8.1.12 Utility Impact Potential

Utility companies with known facilities within the proposed project limits were contacted via email informing them of the PD&E Study and requested that they mark one set of the base plans enclosed with their principal existing and proposed facilities. They were also requested to submit any general concerns and/or comments that would be useful in the evaluation process. Refer to **Table 3-1** (see Page 3-1) for a list of utilities present within the project limits.

The majority of the existing/proposed overhead and buried utilities run along US 27 and Schofield Road. As a result of the construction of the preferred alternative, most utilities located within the major interchanges where reconstruction may occur (such as US 27 and SR 429/Schofield Road) will be impacted and will need to be relocated. The preferred alternative also encroaches onto the Duke Energy Transmission Lines/Poles that are

located on the east of US 27. Due to this encroachment, there are approximately 36 transmission poles that are being impacted and may require relocation. There are also impacts to the AT&T Transmission buried cable conduit which runs along US 27 from South Bradshaw Road to approximately 0.5 mile south of Frank Jarrell Road. CFX will continue to coordinate the utility owners during Final Design and Construction.

8.1.13 Proposed Drainage Conditions

The following briefly summarizes the proposed drainage conditions for the preferred alternative. For more detailed information please refer to the Location Hydraulics Report (LHR) and Pond Siting Report (PSR) prepared for this study, supplemental documents to this report.

The Lake/Orange County Connector corridor is divided into five (5) basins for stormwater management. All the proposed basins discharge into open basins. The project's recommended stormwater management system includes onsite and offsite ditches along with drainage structures to convey the onsite stormwater runoff into the stormwater facilities and the offsite stormwater runoff to its pre-existing destination. The recommended stormwater management system utilized for each basin was designed to be as consistent as possible with the pre-existing conditions. Water quality treatment and attenuation will be achieved from the construction of new wet detention ponds and new dry retention ponds. Three alternative pond options were evaluated for each basin. Based on the pond alternative evaluation matrix analysis, preferred pond sites were selected for each basin. It should be noted that the entire 82' median was assumed as an impervious area for sizing the ponds for consideration of future widening. The proposed basin limits and their respective outfall locations are listed in **Table-8-4** and a summary of the proposed conditions for each basin are included below.

Basin Name	From Station	To Station	Preferred Drainage Facility Outfall Locations
Basin 1	100+00.00	135+73.05	Ponds 1A1, 1A2, and 1A3 discharge into the wetlands southwest of Lake Adain. Pond 1A4 discharges into the existing natural pond to the west of Pond 1A4.
Basin 2	135+73.05	188+46.66	Pond 2A discharges into the wetlands between Lake Adain and Sawgrass Lake.
Basin 3	188+46.66	244+20.95	Ponds 3A1 and 3A2 discharge into the wetlands east of Sawgrass Lake. Pond 3A3 discharges east into the series of natural ponds.
Basin 4	244+20.95	315+05.52	Pond 4C1 discharges into the wetlands west of Lake Needham, Pond 4C2 discharges into Pond 3A1, and Pond 4C3 discharges into the wetlands north of Lake Needham.
Basin 5	315+05.52	334+66.44	Ponds 5A1 and 5A2 discharge to the southwest flowing overland into Lake Needham.

Table 8-4: Summary of Proposed Basin Limits and Outfall Locations

<u>Basin 1</u>

The section of US 27 impacted by this project had been previously permitted by SJRWMD (ERP No. 90260-2). Existing FDOT Drainage Facilities C and D (with corresponding floodplain compensation areas) from the ERP mentioned above are located within the infields of the corridor's intersection with US 27. Pond C will not be impacted by the proposed project, but existing Pond D will be greatly impacted and will be replaced by the proposed dry retention Pond 1A4.

The proposed Ponds 1A1, 1A2, and 1A3 are flood plain compensation ponds. Ponds 1A1, 1A2, and the existing lake within the intersection infield are hydraulically connected and discharge to the north of Pond 1A1 into the wetlands southwest of Lake Adain. Pond 1A3 discharges to the northwest into the wetlands southwest of Lake Adain. The proposed dry retention Pond 1A4 was sized for the new corridor and existing FDOT Pond D's attenuation and treatment volumes. Pond 1A4 discharges into the existing pond to the west of Pond 1A4, which is hydraulically connected to the wetlands southwest of Lake Adain.

Basin 2

Basin 2 falls within and impacts FEMA Flood Zones A a`nd AE. The proposed dry retention Pond 2A is sized for the new corridor's attenuation, treatment, and floodplain

compensation volumes. Pond 2A discharges into the wetlands between Lake Adain and Sawgrass Lake.

Small offsite areas along the north side of the basin drain toward the new corridor and would have been collected in a depressional/low area within the ROW, therefore the proposed basin and stormwater pond were sized to include the drainage area/volume. An offsite area near the center of the south side of the basin drained across the basin and into a depressional/low area on the north side of the basin. The redirected area is smaller than the area taken in by project's proposed drainage pond that had drained into the destination depressional/low area.

<u>Basin 3</u>

The basin falls within and impacts FEMA flood Zones A and AE.

The proposed wet detention Pond 3A1 is sized for the new corridor's attenuation, treatment, and a portion of the floodplain compensation volumes. Ponds 3A2 and 3A3 are floodplain compensation ponds. Ponds 3A1, 3A2, and the existing natural ponds on the northwest side of the CR 455 interchange are hydraulically connected. Ponds 3A1 and 3A2 discharge into the wetlands east of Sawgrass Lake. Pond 3A3 discharges into the existing ponds on the northwest side of the CR 455 interchange.

Small offsite areas draining toward the north side of the new corridor will be directed into the proposed stormwater pond (Pond 3A1) which will be sized to include these offsite drainage areas/volumes. A large offsite area adjacent to the north side of the main corridor from Station 220+00 to 230+00 will be conveyed with an offsite ditch and drainage structures into the flood compensation area (Pond 3A3).

Basin 4

Portions of Basin 4 are located within SJRWMD and SFWMD therefore the drainage calculations utilized the most stringent criteria from the water management districts. The basin falls within and impacts FEMA flood Zones A and AE.

The proposed dry retention Pond 4C1 is sized for the new corridor's attenuation and treatment volumes. Ponds 4C2 and 4C3 are flood compensation ponds. Pond 4C1 discharges into the wetlands adjacent to the west side of Lake Needham. Pond 4C2

discharges into Pond 3A1, which is hydraulically connected to the flood plain. Pond 4C3 discharges into the wetlands north of Lake Needham.

A small offsite area at the northeast corner of the CR 455 intersection flows toward the new corridor and would have been collected in a depressional/low area within the ROW, therefore the proposed basin and stormwater pond were sized to include the drainage area/volume. Two offsite areas that drain from east to west across the proposed CR 455 connection will be conveyed by offsite ditches and cross-drains into their respective discharge destinations. Large offsite areas along the north side of the main corridor will be conveyed with an offsite ditch and cross drains into their original discharge destinations.

<u>Basin 5</u>

The basin does not fall within FEMA flood zones.

The section of SR 429 impacted by this project was previously permitted by FDEP (ERP No. 48-205102-002-EI). Existing CFX drainage facilities are located within the basin at the corridor's interchange with SR 429. Two of the existing CFX ponds (Ponds 4A and 4B) appear to be impacted by the project's eastbound ramp to northbound SR 429. The existing impacts to the CFX ponds were estimated utilizing the plan view footprint of the lane and data obtained from the existing ERP documents. To minimize impacts the ramps are to be designed with retention walls.

The proposed dry retention Ponds 5A1 and 5A2 are sized for the new corridor's attenuation and treatment as well as impacts to the existing CFX ponds' volumes as described below. Ponds 5A1 and 5A2 discharge to the southwest flowing overland into Lake Needham.

Offsite areas draining towards SR 429 were addressed by existing cross-drains that were not impacted by the proposed project so will not require extensions. The offsite area draining toward the basin between Schofield Road and the proposed Schofield Road intersection will be conveyed with an offsite ditch and a cross drain into its original discharge destination.

Cross Drains

Due to the proposed realignment and widening of US 27 as part of the preferred alternative, three existing cross drains (cross drains 2-4) will have to be relocated to lie under the new roadway footprint and analyzed in order to maintain the connectivity of the flow without causing any significant change in the flood elevations. These cross drains were analyzed using the existing data from St. John's River Water Management District (SJRWMD) permit #90260-2. There is a total of twelve cross drains proposed along the new corridor and ramps. The proposed cross drain locations were chosen based on the natural flow of the land from the surrounding floodplains and wetlands. The proposed Lake/Orange County Connector will have floodplain impacts along most of the corridor. These floodplain impacts will be mitigated by routing this volume to the project's proposed storm water management facilities and roadside swales. **Table 8-5** provides a summary of the proposed culverts.

Cross Drain ID	Pipe Description	Flow Direction	Receiving Water Body	Within Floodplain (Yes/No)
CD-4A	18" RCP	South	Unnamed wetland system	Yes (Zone A)
CD-4B	18" RCP	North	Pond 1A1	Yes (Zone A)
CD-4C	18" RCP	East	Unnamed wetland system	Yes (Zone A)
CD-5	18" RCP	South	Unnamed wetland system	Yes (Zone AE)
CD-6	42" RCP	West	Unnamed surface water	Yes (Zone A)
CD-6A	24" RCP	South	Pond 3A1	Yes (Zone AE)
CD-6B	30" RCP	South	Pond 3A2	Yes (Zone AE)
CD-6C	24" RCP	South	Unnamed wetland system	Yes (Zone AE)
CD-7	30" RCP	West	Unnamed surface water	Yes (Zone A)
CD-8	18" RCP	South	Unnamed wetland system	Yes (Zone AE)
CD-9	18" RCP	South	Unnamed wetland system flowing to Lake Needham	Yes (Zone AE)
CD-10	24" RCP	West	Unnamed wetland system flowing to Lake Needham	No

 Table 8-5: Proposed Cross Drain General Information

• <u>CD-2</u>

CD-2 is an existing cross drain located along US 27. It connects the existing floodplain with Keene Lake on the west side of the road. The existing 165-ft cross drain will be extended to 190-ft in the post-development. The 50-year design stage increased by 0.09 feet due to the extension, and the 100-year stage also increased by 0.13-ft.

• <u>CD-3</u>

CD-3 is an existing cross drain located along US 27. It connects the depression on the west side of the road with the wetland and floodplain on the east side that leads to Square Lake. The existing 190-ft cross drain will be extended on the East and shortened on the West to a total of 195-ft in the post-development. The 50-year design stage increased by 0.08-ft due to the extension, and the 100-year stage also increased by 0.09-ft.

• <u>CD-4</u>

CD-4 is an existing cross drain located along US 27. It provides connectivity for the floodplains and wetlands on the east and west side of US 27. The existing 177-foot cross drain will be extended on the East and shortened on the West to a total of 192 feet in the post-development. CD-4 will outfall into proposed Pond 1A1 that is used for floodplain compensation, which then discharges through CD-4C to the downstream floodplain. The 50-year design stage increased by 0.06 ft due to the proposed modifications and extension, and the 100-year stage decreased by 0.01 ft.

• <u>CD-4A</u>

CD-4A will provide connectivity between the existing lake that will be in the infield and the proposed floodplain compensation Pond 1A2. This will allow the lake to continue to be a part of the floodplain without any disruption. The calculated backwater stage of 106.73-ft for the 50-year design flow from the analysis is less than the proposed roadway elevation of 119.50-ft. The proposed cross drain size from the analysis is an 18-in pipe.

• <u>CD-4B</u>

CD-4B will provide connectivity between the Pond 1A2 and Pond 1A1. This will allow these floodplain compensation ponds to continue to be a part of the floodplain without

any disruption. The calculated backwater stage of 107.02-ft for the 50-year design flow from the analysis is less than the proposed roadway elevation of 138.70-ft. The proposed cross drain size from the analysis is an 18-in pipe.

• <u>CD-4C</u>

CENTRAL FLORIDA

AUTHORITY

CD-4C will provide connectivity between Pond 1A1 and the downstream floodplain. This will allow the pond to continue to be a part of the floodplain without any disruption. The calculated backwater stage of 106.94-ft for the 50-year design flow from the analysis is less than the proposed roadway elevation of 125.95-ft. The proposed cross drain size from the analysis is an 18-in pipe.

• <u>CD-5</u>

CD-5 is a proposed cross drain that will cross the Lake/Orange County Connector mainline. CD-5 is proposed to maintain connectivity between a 57.2-acre depressional area located just north of the mainline, and the remainder of the floodplain to the south. This basin area contains within it 14.04 acres (Basin G1) which drains into a small depression first, before overtopping and flowing into the second depression (Basin G2) and rising until it flows into CD-5. The calculated backwater stage of 106.45-ft for the 50-year design flow from the analysis is less than the proposed roadway elevation of 116.63-ft. The proposed cross drain size from the ICPR analysis is an 18-in pipe.

• <u>CD-6</u>

CD-6 will be located across the proposed CR 455. It will convey runoff from a basin area of 42.4 acres on the east side of CR 455 to a depression located in a floodplain on the west. This upstream basin area contains within it 8.1 acres (Basin E) which drains into a small depression first, before overtopping and flowing across a steep downhill slope into CD-6 (Basin F) and out to the floodplain on the west of CR 455. Since this floodplain is being bisected by the proposed Lake/Orange County Connector and ramps, three more cross drains were designed in succession to allow the runoff to continue flowing to the south. The calculated backwater stage of 110.22-ft for the 50-year design flow from the analysis is less than the proposed roadway elevation of 111.48-ft. The proposed cross drain size from the analysis is a 42-in pipe.

• <u>CD-6A</u>

CD-6A will be located downstream of CD-6. It will convey runoff from a basin area of 41.8 acres on the north side of Ramp 6 and west side of CR 455 to a proposed pond (Pond 3A1) in the infield of the Lake/Orange County Connector. The calculated backwater stage of 106.79-ft for the 50-year design flow from the ICPR analysis is less than the proposed pond berm of 109.88-ft. The proposed cross drain size from the analysis is a 24-in pipe.

• <u>CD-6B</u>

CD-6B will be located downstream of CD-6A. It will connect proposed Pond 3A1 in the northern infield of the Lake/Orange County Connector to proposed Pond 3A2 in the southern infield. Pond 3A1 is also connected to floodplain compensation Pond 4C1 by an equalized pipe. The calculated backwater stage of 107.02-ft for the 50-year design flow from the analysis is less than the proposed roadway elevation of 137.27-ft. The proposed cross drain size from the analysis is a 30-in pipe.

• <u>CD-6C</u>

CD-6C will be located downstream of CD-6B. It will connect proposed Pond 3A2 in the southern infield of the Lake/Orange County Connector to the floodplain to the south. Pond 3A2 is designed as a floodplain compensation pond. Therefore, CD-6C was placed at the bottom of the pond so that any runoff would flow directly into the floodplain to the south. The calculated backwater stage of 107.23-ft for the 50-year design flow from the analysis is less than the proposed pond berm elevation of 107.50-ft. The proposed cross drain size from the analysis is a 24-in pipe.

• <u>CD-7</u>

CD-7 will convey runoff from 12.4 acres of land that flows from the east side of the proposed CR 455 to a depression on the west side. The calculated backwater stage of 112.10 ft for the 50-year design flow from HY-8 the ICPR analysis is less than the proposed roadway elevation of 112.76-ft. The proposed cross drain size from the analysis is a 30-in pipe.

• <u>CD-8</u>

CD-8 will be located along the mainline of the Lake/Orange County Connector. The Lake/Orange County Connector transects a large Floodplain Zone AE with an elevation of 106 feet. CD-8, along with CD-9, will provide connectivity between the northern and southern limits of this floodplain that Lake/Orange County Connector will be cutting through. The floodplain in which these cross drains are located within contains many different depressions and ridges. The calculated backwater stage of 106.31-ft for the 50-year design flow from the analysis is less than the proposed roadway elevation of 109.22-ft. The calculated backwater stage of 106.41-ft for the 100-year flow from the analysis is less than the floodplain elevation of 106-ft. The proposed cross drain size from the ICPR analysis is an 18-in pipe.

• <u>CD-9</u>

CD-9 will be located along the mainline of the Lake/Orange County Connector. The Lake/Orange County Connector transects a large Floodplain Zone AE with an elevation of 106 feet. The calculated backwater stage of 106.33-ft for the 50-year design flow from the analysis is less than the proposed roadway elevation of 124.94-ft. The calculated backwater stage of 106.40-ft for the 100-year flow from the analysis is less than the floodplain elevation of 106-ft. The proposed cross drain size from the ICPR analysis is an 18-in pipe.

• <u>CD-10</u>

CD-10 will convey runoff from the land that flows from the east side of the proposed Valencia Road to the existing depression on the west side. The basin area is approximately 6.1 acres. The calculated backwater stage of 116.64-ft for the 50-year design flow from HY-8 analysis is less than the proposed roadway elevation of 116.91-ft. The proposed cross drain size from the HY-8 analysis is a 24-in pipe.

8.1.14 Floodplain Impacts

The project will impact the 100-year floodplain in three different ways:

- 1) Longitudinal roadway impacts resulting from filling the floodplain areas.
- 2) Impacts due to proposed pond locations in floodplain.

3) Impacts due to proposed cross drains in floodplain.

CENTRAL FLORIDA

AUTHORITY

The longitudinal impact due to the preferred alternative cannot be avoided. During the final design phase of the project, every effort should be taken to minimize floodplain and wetland impacts. Floodplain impacts could be compensated for by routing to swales at low profile locations, proposed stormwater ponds, and designated floodplain compensation ponds.

FEMA's Flood Insurance Rate Maps (FIRM) (Appendix D) show that portions of the project lie within the 100-year floodplain areas Zone AE and Zone A. FEMA Map No. 12069C0675E and 12095C0375F provide flood information for the project. Estimated 100-yr floodplain elevations were determined from FEMA Maps and existing SJRWMD and SFWMD permits.

Floodplain impacts will be minimized by including floodplain compensation storage in the design of the proposed ponds. Total floodplain impacts due to the roadway fill for the entire proposed project corridor is 180.17 ac-ft. The total available compensation in all the proposed ponds is 193.99 ac-ft. Based on the preliminary evaluation the proposed project will provide more floodplain compensation than the impact. Therefore, a cup for cup compensation is provided by the project. Seven (7) floodplain compensation pond sites were identified in Basins 1, 3, and 4 for this project, within the preferred drainage pond alternatives. The preferred floodplain compensation sites include Ponds 1A1, 1A2, 1A3, 3A2, 3A3, 4C2, and 4C3. In addition to the seven (7) floodplain compensation ponds, a couple stormwater ponds located adjacent to floodplains will also provide floodplain compensation. The preferred combined floodplain compensation/drainage ponds sites include Ponds 2A and 3A1. At certain segments of the project, for example in Basin 4, the roadway profile is low enough to provide floodplain compensation in the swales; this option should be evaluated during the design phase to minimize offsite flood plain compensation areas. Please refer to **Table 8-6** for a summary of floodplain impacts and compensation.

Basin ID	Pond ID	Total Basin Floodplain Impact Volume (ac-ft)	Available Compensation Volume in Pond (ac-ft)	Total Compensation Volume in Basin Ponds (ac-ft)	
	1A1		14.16		
1	1A2	20.65	7.29	20.17	
I	1A3	29.05	10.71	52.17	
	1A4		0		
2	2A	4.51	7.73	7.73	
	3A1		18.66		
3	3A2	68.45	11.13	73.72	
	3A3		43.93		
	4C1		0		
4	4C2	77.57	77.57 3.79		
	4C3		76.58		
F	5A1	0.00	0.00	0.00	
5	5A2	0.00	0.00	0.00	
Total (ac-ft): 180.17		19)3.99		

In addition, runoff within the corridor will be collected and conveyed to stormwater management facilities; therefore, reducing overall impacts to the remaining floodplain. The floodplain is in a medium density, semi-urbanized area and the encroachments are classified as "minimal". Minimal encroachment of a floodplain occurs when there is floodplain involvement, but the impacts on human life, transportation facilities, and natural and beneficial floodplain values are not significant and can be resolved with minimal efforts. Normally, these minimal efforts to address the impacts will consist of applying the FDOT drainage design standards and following the SJRWMD and SFWMD procedures to achieve results that will not increase or significantly change the flood elevation and the floodplain limits.

The quantified flood impact volumes are based on limited information available during the PD&E study. A detailed evaluation should be completed during the final design. Based on the preliminary evaluation the project as currently proposed will provide more floodplain compensation than impacts. Therefore, a cup for cup compensation is provided by the project. As a result of geotechnical exploration, it was determined that it is feasible to remove the proposed bridge traversing the area between Lake Adain and

Sawgrass Lake. This area is part of a FEMA floodplain (Zone AE, Elevation 106.4 feet). A proposed cross drain will be necessary at this location in order to provide connectivity between the upstream and downstream portions of the existing floodplain. The change including floodplain compensation and necessary cross drains for this area will need to be addressed during the design phase of this project.

8.1.15 Right-of-Way Impacts

The preliminary cost estimates include the expenditures associated with right-of-way acquisition such as land costs. The right-of-way cost estimates and acres of impacts for the preferred alternative are currently shown in **Table 8-7**.

Roadway Impacts (Acres)	Pond Impacts (Acres)	Cost Estimate		
403.57	39.98	\$102 Million		

Table 8-7: Right-of-way Impacts

8.1.16 Construction Cost Estimate

The construction cost estimate for the preferred alternative is summarized in **Table 8-8.** For more details see **Appendix G**.

Cost	Preferred Alternative
Construction Cost	\$289,510,000
Engineering/Administration/Legal (24%)	\$69,480,000
Mitigation (Wetland Impact)	\$7,308,000
Mitigation (Gopher Tortoise Habitat)	\$1,076,400
Toll Collection Equipment	\$1,260,000
TOTAL COST	\$368,634,400

Table 8-8: Construction Cost Estimate

8.1.17 Traffic Control Plan

Traffic Control Plans (TCP) are necessary in order to demonstrate the ability to properly and safely implement the proposed improvements while maintaining the facility open to traffic. **Figures 8-5 through 8-7** depict pertinent information and conceptual construction sequence schemes for the recommended alternative. It should be noted that the main purpose of these preliminary traffic control plans is to ensure the adequate constructability of the proposed improvements, while avoiding any "fatal flaws". They are not intended to provide all the details (i.e. signage, MOT devices, cost, schedule information, etc.) generally associated with more detailed maintenance of traffic control plans prepared during the final design phase.

It is anticipated that extended closure of existing lanes will not be necessary and that no major construction easements will be required for traffic control purposes. Even though some interruption of vehicular flow is unavoidable, the appropriate use of lane markings, signs, flagmen and other commonly used construction work zone traffic control techniques will be employed to minimize inconvenience.

Most of the connector mainline bridges (3A, 3B, 4A, 4B, 5A, 5B, 7A, 7B, and 7C) could be constructed with minimal maintenance of traffic using the FDOT Standard Plans Maintenance of Traffic series 102-600 since they consist of simple span Florida-I Beam superstructures. The rest of the bridges (1, 2, 6A, 6B, 8, 9, 10, 11, 12, 13, and 14) consist of either tangent steel plate girders or curved steel plate girders and would require temporary shoring during construction due to the field splices that are needed for the girders. This will require special maintenance of traffic plans. The location of the temporary shoring and coordination with the Traffic Control Plans will be performed during final design. Figure 8-5: Temporary Traffic Control Plan Summary

Figure 8-6: MOT at the US 27 Interchange

Figure 8-7: MOT at the SR 429 Interchange

8.2 Permit Agency Coordination

The project will also require a U.S. Army Corps of Engineers 404 Dredge and Fill Permit, mitigation for impacts to wetlands and wood stork SFH, as well as permitting and relocation of gopher tortoise

St. Johns River Water Management District

This project spans the boundary of two water management districts, SJRWMD and SFWMD and will therefore require Environmental Resource Permits (ERP) from both agencies or a permitting agreement between the two agencies to cover the entire project corridor. Coordination with SJRWMD and SFWMD will continue in final design.

Florida Fish and Wildlife Conservation Commission

FWC will provide commentary during the ERP review process. FWC may conduct field reviews and comment to the SJRWMD and SFWMD on any adverse effects the proposed activity may have on state protected wildlife species and their habitats.

US Army Corps of Engineers

Because impacts to wetlands under the jurisdiction of USACE would total more than onehalf acre, a USACE 404 Dredge and Fill permit is anticipated. Unavoidable impacts to jurisdictional wetlands will require mitigation. The USACE provides a separate and independent review of the ERP from the WMD's.

Environmental Protection Agency

The EPA requires permits for stormwater discharge to Waters of the United States in association with the National Pollutant Discharge Elimination System (NPDES) and the Clean Water Act. The permit application requirements include a stormwater pollution prevention plan indicating both structural and non-structural controls to be implemented. A NPDES permit is anticipated.

U.S. Fish and Wildlife Service

No adverse impacts to listed species are anticipated from the proposed project. Federally listed species that may be affected but would not be adversely affected by the proposed project are American alligator, Audubon's crested caracara, Britton's beargrass, bluetail mole skink, Carter's mustard, clasping warea, eastern diamondback rattlesnake, eastern indigo snake, Everglade snail kite, Lewton's polygala, papery whitlow-wort, pygmy fringe

tree, sand skink, scrub blazingstar, scrub plum, striped newt, and wood stork. A determination of No Effect was made for Florida bonamia, Florida scrub-jay, red-cockaded woodpecker, scrub buckwheat, scrub lupine, and short-leaved rosemary.

8.3 Environmental Impacts

The following sections briefly summarize some of the key environmental considerations prevalent within the project study area. For more detailed information on the proposed environmental conditions, please refer to the PEIR prepared for this study.

8.3.1 Historic Sites

A Phase I Cultural Resource Assessment Survey (CRAS) was prepared by SEARCH Inc. for the proposed roadway alignment and included surveys for historic and archaeological sites. In addition to a CRAS of the proposed roadway improvements, a CRAS Addendum was also completed for 15 preferred pond locations. Documentation of concurrence with the State Historic Preservation Office is provided in **Appendix H**. The architectural survey resulted in the identification and evaluation of eight historic resources within the Lake/Orange County Connector Area of Potential Effect, including one previously recorded resource and seven newly recorded resources. The previously recorded resources include one linear resource (8LA04779), one object (8OR11171), two structures (8LA04795 and 8LA04796), and three resource groups (8LA04717, 8LA04727, and 8LA04731). Additionally, during field reviews one previously recorded resource (8LA02129) was found to have been demolished.

Based on the results of the current survey for the roadway and ponds and due to a lack of historic associations, architectural significance, and/or historic integrity, all eight historic resources identified within the Lake/Orange County Connector Area of Potential Effect are likely ineligible for the National Register of Historic Places (NRHP), individually or as contributing resources to a historic district.

8.3.2 Archaeological Sites

No features, midden, or other clearly discernable intact deposits were documented during the archaeological investigation. Both of the newly recorded archaeological sites (8LA04797 and 8LA04829) exhibited a low density of cultural materials and a lack of

diagnostic artifacts. These sites do not appear to contain archaeological deposits that have the potential to yield further information important in the prehistory or history of the region. In the opinion of SEARCH, 8LA04797 and 8LA04829 are ineligible for the NRHP. Archaeological occurrences are categorically ineligible for the NRHP. No further work is recommended for 8LA04797, 8LA04829, AO 1, or AO 2.

8.3.3 Wetlands and Other Surface Waters

As part of the documentation for this PD&E study, a Natural Resources Evaluation was developed that documents wetlands and Others Surface Waters as well as potential impacts from the project.

It is anticipated that the preferred alternative would result in 64 acres of wetland impacts, 49 acres of impacts to wood stork (*Mycteria americana*) Suitable Foraging Habitat (SFH), and 71 acres of impacts to Other Surface Waters (OSW). There are four ponds proposed as part of this project which are located outside the footprint of the preferred alternative. Wetland impacts which will result from the construction of this project will be mitigated pursuant to Section 373.4137, F.S., to satisfy all mitigation requirements of Part IV of Chapter 373, F.S., and 33 U.S.C. §1344.

8.3.4 Protected Species and Habitat

A Natural Resources Evaluation was developed as part of this PD&E study and documented the potential impacts to protected species and their habitats. No adverse impacts to listed species are anticipated from the proposed project. Federally listed species which the project May Affect, but is Not Likely to Adversely Affect include the American alligator, Audubon's crested caracara, Britton's beargrass, bluetail mole skink, Carter's mustard, clasping warea, eastern diamondback rattlesnake, eastern indigo snake, Everglade snail kite, Lewton's polygala, papery whitlow-wort, pygmy fringe tree, sand skink, scrub blazingstar, scrub plum, striped newt, and wood stork. A determination of No Effect was made for Florida bonamia, Florida scrub-jay, red-cockaded woodpecker, scrub buckwheat, scrub lupine, and short-leaved rosemary.

No Adverse Effects are Anticipated for the state listed burrowing owl, Florida pine snake, Florida sandhill crane, gopher tortoise, little blue heron, southeastern American kestrel, or tri-colored heron. It is anticipated that the preferred alternative and stormwater ponds would result in 64 acres of wetland impacts, 71 acres of OSW impacts, 49 acres of impacts to wood stork SFH, and 332 acres of impacts to vegetated uplands. The four proposed stormwater ponds that are outside the preferred alternative alignment (1A6, 2A, 3A3, 4A3) would result in 0.13 acres of impacts to wetlands and wood stork SFH as well as 50 acres of impacts to vegetated uplands.

To avoid and minimize impacts during construction, CFX will adhere to the most recent version of the *USFWS Standard Protection Measures for the Eastern Indigo Snake*. CFX will mitigate for any unavoidable impacts to wood stork SFH at an approved mitigation bank and in accordance with the USFWS *Wood Stork Effect Determination Key* (U.S. Army Corps of Engineers and USFWS 2008). CFX will conduct a 100 percent gopher tortoise burrow survey in accordance with Florida Fish and Wildlife Conservation Commission rules and guidelines.

8.3.5 Highway Traffic Noise

A traffic Noise Study Report was performed following Code of Federal Regulations Title 23 Part 772 (23 CFR 772), *Procedures for Abatement of Highway Traffic Noise and Construction Noise*, using methodology established by the FDOT in the *Project Development and Environment Manual*, Part 2, Chapter 18 (dated January 14, 2018).

Approximately 51 residences, single-family homes, were identified as being sensitive to traffic noise along the proposed Lake/Orange County Connector within the limits of this project. Also, two non-residential special-use noise-sensitive sites, including a community pool and trail were identified along the project corridor. Design Year traffic noise levels at nearby residences are predicted to range from 52.3 to 69.8 dB(A). The Preferred Alternative noise levels at special land use sites are predicted to range from 52.3 dB(A) at the Zanzibar pool area to 56.7 dB(A) at the Zanzibar Wingspread Loop Trail during the Design Year. Noise impacts are predicted to occur at three residences. The three impacted residences are located in the Zanzibar residential community located just west of the eastbound Lake/Orange County Connector ramp to southbound SR 429. No other noise-sensitive sites within the project study area are predicted to experience traffic noise levels equal to or exceeding the Noise Abatement Criteria (NAC). None of the noise-

sensitive sites are expected to experience a substantial noise level increase [i.e., greater than 15.0 dB(A) over existing levels] with the Preferred Alternative.

Noise barriers were considered for the three Zanzibar residences where Design Year traffic noise levels were predicted to equal or exceed the NAC. Since traffic management and alignment modifications were determined to not be viable abatement measures, noise barriers were determined to be the only potentially viable abatement measure that could be implemented for this project.

Five noise barrier concepts were evaluated for the three impacted noise-sensitive sites. Although the five noise barrier concepts met the noise reduction criterion of 7.0 dB(A), noise abatement was not considered cost reasonable (\$42,000 per benefited receptor) in accordance with the policy used by CFX.

Based on the noise analysis performed to date, there are no apparent solutions available to mitigate the noise impacts at these locations. Therefore, noise barriers are not recommended for further consideration or construction.

8.3.6 Contamination

A Level I Contamination Screening Evaluation Report (CSER) has been prepared in accordance with the FDOT's *PD&E Manual, Part 2, Chapter 20* (*Contamination Impacts*), updated January 14, 2019. A total of nine sites (**Table 8-9**) were identified with potential contamination concerns. After evaluation, one of those sites was assigned a risk rating of None, five sites were assigned a risk rating of Medium, and three sites were assigned a risk rating of High. All Medium- and High-Risk sites are recommended for additional assessment, including soil and groundwater testing, if right-of-way acquisition or subsurface work (including construction of any structures or stormwater ponds) is proposed on or adjacent to them.

8.4 Summary of Impacts

Table 8-10 provides a summary of impacts for the No Build and Preferred Alternative ofthe Lake/Orange County Connector.

Site #	Facility Name	Address	Facility ID (FDEP/RCRA)	Databases	Concern	Owner	Contaminated Parcel Location Relative to Project Corridor	Risk Rating
1	Lake Louisa State Park	7305 US 27	FLR000148049	RCRA	Hazardous Waste (small quantity generator)	State of Florida	Adjacent	None
2	Arnold Groves Storage Tank	15625 Frank Jerrell Road	9100695	STCM	Petroleum	JJJR Properties LLC	560 feet south	Medium
3	Sun Ridge Four MGMT Inc.	6535 Cook Road	9803085	STCM	Petroleum	Catherine E Ross Groves Inc	1,200 feet north	Medium
4	Island Lake Storage Tank- Lake County Grove	Cook Road	9700467	STCM	Petroleum	Lake Louisa LLC	Co-located	Medium
5	Lake County Grove Storage Tank	732 Schofield Road	9201649	STCM	Petroleum	Davidson Harvest LLC et al	Co-located	Medium
6	Schofield Corporation of Orlando/545 Landfill	8050 Avalon Road	25291 / 9801128 / FLD984216531	FDEP Solid Waste / STCM / RCRA	Landfill	Schofield Corporation of Orlando Inc	Co-located	High
7	West Orange Environmental Resources C&D	7706 Avalon Road	85524 / 25291	FDEP Solid Waste	Landfill	Oce West Orange LLC	Co-located	High
8	Braun Properties	8815 Avalon Road	FLD984216531	RCRA	Farm Chemicals	Undetermined	Co-located	High
9	Former Agricultural Areas	Throughout Project Area	None	None	Farm Chemicals	Multiple	Co-located	Medium

Table 8-9: Potentially Contaminated Sites

Table 8-10: Summary of Impacts

	Summary of Issues	No Build	Build - Preferred Alternative
	Description	No additional freeway connection is provided between South Lake and West Orange Counties	New freeway connection is provided between US 27 and SR 29
	Provide Additional Capacity/Transportation Demand	Potentially worse due to expected increased congestion resulting from additional population generated by the Wellness Way Area Plan (WWAP) in South Lake County and the Horizon West Special Planning Area (HWSPA) in Orange County	Planned project improvements are anticipated to accommodate the expected increase in traffic due to population and employment growth along the corridor. The Lake/Orange County Connector will help alleviate this increase by partially diverting the traffic from other east-west facilities
	Evacuation/Emergency Response	Potentially worse due to increased congestion	Improved with additional capacity provided
Purpose and Need	Transportation Connectivity	The current deficient east-west connectivity within the study area will remain the same	Would provide much needed connectivity in the area and significantly improve regional mobility and travel time
	Multimodal Support	No additional multimodal support	A new limited access facility could support inter-agency transit service between Lake and Orange counties. The Horizon West Town Center is an intermodal and freight staging facility potentially providing access to trucks, rails, airports and/or ports. The proposed connector would link this facility with two major SIS highways (US 27 and SR 429) and thus connect Lake County via a network of limited-access facilities to the Orlando International Airport and Port Canaveral
	Economic Viability/Job Creation	Does not support economic growth and job creation	Considered to be a key element in promoting further economic growth in the area
Social Environment	Right-of-way Impacts	None	403.57 acres
Planning Consistency	Consistency with Long Range Transportation Plan	Νο	All proposed improvements are consistent with the CFX Master Plan, CFX Five-Year Work Plan, Lake- Sumter MPO 2040 LRTP Needs Plan and the MetroPlan Orlando Plan Development and Cost Feasible Projects
	Utility Impacts	None	Yes. Transmission lines, electric, telephone, gas
	Pond Acreage	None	39.98 acres
	Number of Ponds	None	15
Engineering	Proposed Bridges	None	20
Engineering			
	Contamination Site Impacts	None	9 total sites - 1 None, 5 Medium and 3 High
	Number of Impacted Noise Receptors	None	3
	Proposed Noise Walls		None
	Wetland Impacts		64 acres
Environmental			
	wood stork Suitable Foraging Habitat		49 acres
		l	
			É200 E40 000
		0	\$289,510,000
Lost	Kight-of-Way	0	\$102,000,000
	wingation	U	\$8,384,400

Appendix A: Corridor Report Analytical Hierarchy Process Results

Alternatives Evaluation

The final evaluation of the various corridor alternatives for the proposed Lake/Orange County Connector involved essentially a multi-objective/multi-attribute decision making process. The establishment of the relative importance of each objective/criteria was critical in order to ultimately choose the most efficient or "best" corridor alternative. This process involved decisions which must make trade-offs between different and often The core decision making tool utilized during the conflicting objectives/criteria. evaluation was the Analytic Hierarchical Process (AHP). This process was developed by Thomas J. Saaty for decision analysis of complex subjective problems involving a large number of criteria. This appendix documents the application of the AHP computer decision making software used to determine the recommended corridor alternative for the proposed project. Study participants started by addressing pertinent issues such as setting priorities, subsequently establishing criteria and criteria weights, and finally by evaluating the various alternatives for the proposed project improvements. Figure A-1 illustrates the methodology utilized in the evaluation of the corridor alternatives for the proposed project.

Evaluation Methodology

The Analytic Hierarchy Process (AHP) method is based on the breakdown of each problem into a system of stratified levels or hierarchies where each level consists of criteria or objectives to be compared. Each of the criteria or objectives in a level is further broken down in subsequent levels into sub-criteria or objectives that are easier to quantify. The relative importance or priority for all the criteria in a given level is then established through a sequence of pair-wise comparisons which will ultimately lead to the derivation of priorities (i.e., weights or importance) for each criterion as well as the determination of the recommended corridor alternative. Pair-wise comparisons have been technically proven to be more reliable in eliciting human judgment than directly assigning weights. Once the hierarchy was established and agreed upon, a questionnaire was developed based on pair-wise comparisons of the established

Figure A-1 criteria. It should be noted that even though project questionnaires are often utilized by participants to establish the importance, priority or weight of each criterion, in our case the panel participants agreed to adopt the weights previously established during the previous evaluation phase (see values at top of **Table 2-4**). However, a questionnaire was developed to compare each of the corridor alternatives based on each parameter comprising the criteria. After the questionnaires were completed, the data was input into the computer program.

Evaluation Results

The AHP computer application was performed with a group consensus results obtained by aggregating the responses of all participants and applying the group median method. The group median judgments and preferences were then incorporated into the AHP computer program. The AHP computer application results are included at the end of this appendix and **Table A-1** provides a brief explanation of the included outputs. A thorough sensitivity analysis of the results was conducted after finding the recommended roadway alternative as selected by the participants of the study through the execution of the program. The analysis included the investigation of sensitive criterion or criteria within the results. The AHP software also includes a sensitivity analysis feature. This feature investigates the effect of the ranking of the recommended roadway alternative if criteria take on other possible values. The sensitivity analysis identifies the relatively sensitive criteria (i.e., those that cannot be changed much without changing the ranking of the top roadway alternative) to try to estimate these more closely, and then to select a solution which remains a good one over the ranges of likely values of the sensitive parameters. Usually there will be some criteria that can be assigned any reasonable value without affecting the ranking of the recommended alternative. However, there may also be criteria with likely values that would yield a new ranking of the recommended alternative.

	Table A-1
Page No.	Contents
1	Weight assignment for all Primary & Secondary objectives and Final Computed results for both competing alternatives
2	Weight Assignment graph for Primary Objectives
3	Weight Assignment graph for Engineering Impacts
4 to 7	Computed alternative results with respect to secondary objectives of traffic congestion/safety, traffic accommodated, and connectivity
8	Weight Assignment graph for Environmental Impacts
9 to 11	Computed alternative results with respect to secondary objectives of SJRWMD Regulatory Easement impacts, wetland impacts, wildlife and habitat, and outstanding Florida waterway impacts
12	Weight Assignment graph for Socio-Economic Impacts
13 to 14	Computed alternative results with respect to secondary objectives of Community Cohesion and controversy potential
15 to 16	Synthesis of computed alternative results

Model Name: Lake Orange Connector AHP

Treeview

Goal: Pre-Final Alternative Corridor Evaluation Engineering (L: .430) Geometric Considerations (L: .279) Traffic Attractions (L: .279) Connectivity/Directness (L: .186) Utility Impacts (L: .256) Environmental (L: .260) Conservation Lands (L: .385) Wetland Impacts (L: .308) Recreational Resources (L: .308) Socio-Economic (L: .310) Approved Development Impacts (L: .387) Controversy Potential (L: .290) Right-of-way Impacts (L: .323)

Alternatives

Alternative 12	.333
Alternative 17	.333
Alternative 20	.333

* Ideal mode

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Priority Graphs

Priorities with respect to:

Goal: Pre-Final Alternative Corrid...

Engineering Environmental Socio-Economic

> Inconsistency = 0.00 with 0 missing judgments.

Priorities with respect to: Goal: Pre-Final Alternative Corridor E >Engineering

Geometric Considerations Traffic Attractions Connectivity/Directness Utility Impacts Inconsistency = 0.00

with 0 missing judgments.

Priorities with respect to: Goal: Pre-Final Alternative Corridor >Engineering >Geometric Considerations

Alternative 12 Alternative 17 Alternative 20 Inconsistency = 0.00

with 0 missing judgments.

Enter user name

Priorities with respect to: Goal: Pre-Final Alternative Corridor >Engineering >Traffic Attractions

Alternative 12 Alternative 17 Alternative 20 Inconsistency = 0.00 .333 .333 .333

with 0 missing judgments.

Priorities with respect to: Goal: Pre-Final Alternative Corridor >Engineering >Connectivity/Directness

Alternative 12 Alternative 17 Alternative 20 Inconsistency = 0.00

with 0 missing judgments.

Enter user name

Priorities with respect to: Goal: Pre-Final Alternative Corridor >Engineering >Utility Impacts

Alternative 12 Alternative 17 Alternative 20 Inconsistency = 0.00

with 0 missing judgments.

Enter user name

Priorities with respect to: Goal: Pre-Final Alternative Corridor >Environmental

Conservation Lands Wetland Impacts Recreational Resources Inconsistency = 0.00

with 0 missing judgments.

Priorities with respect to: Goal: Pre-Final Alternative Corridor >Environmental >Conservation Lands

Alternative 12 Alternative 17 Alternative 20

Inconsistency = 0.00 with 0 missing judgments.

Priorities with respect to: Goal: Pre-Final Alternative Corridor >Environmental >Wetland Impacts

Alternative 12 Alternative 17 Alternative 20 Inconsistency = 0.00

with 0 missing judgments.

Priorities with respect to: Goal: Pre-Final Alternative Corridor >Environmental >Recreational Resources

Alternative 12 Alternative 17 Alternative 20 Inconsistency = 0.00

with 0 missing judgments.

Priorities with respect to:

Goal: Pre-Final Alternative Corridor Evaluatio > Socio-Economic

Approved Development Impacts Controversy Potential Right-of-way Impacts Inconsistency = 0.00 with 0 missing judgments.

Enter user name

Priorities with respect to: Goal: Pre-Final Alternative Corridor >Socio-Economic >Approved Development Im...

Alternative 12 Alternative 17 Alternative 20 Inconsistency = 0.00

with 0 missing judgments.

Priorities with respect to: Goal: Pre-Final Alternative Corridor >Socio-Economic >Controversy Potential

Alternative 12 Alternative 17 Alternative 20

Inconsistency = 0.00 with 0 missing judgments.

Fotor user name You created this PDF from an application that is not licensed to print to novaPDF printer (<u>http://www.novapdf.com</u>)

Priorities with respect to: Goal: Pre-Final Alternative Corridor >Socio-Economic

>Right-of-way Impacts

with 0 missing judgments.

Alts	Level 1	Level 2	Prty	
Total A			0.309	
	Total Engineering (L: .430)		0.139	▶ [•] Fina
		Geometric	.01063	Tota
	$Freedom(\mathbf{A}_{1}, \mathbf{A}_{2})$	Traffic Att	.04975	
	Engineering (L: .430)	Connectiv	.03316	
		Utility Imp	.04560	
	Total Environmental (L: 260)		0.089	· / /
Alternat		Conservat	.04146	
	Environmental (L: .260)	Wetland I	.03316	
		Recreatio	.01474	' /
	Total Socio-Economic (L: .310)		0.080	
		Approved	.02211	
	Socio-Economic (L: .310)	Controver	.01658	/
		Right-of-w	.04146	
Total A			0.344	
	Total Engineering (L: .430)		0.126	
		Geometric	.02299	
	Engineering $(1 \cdot 430)$	Traffic Att	.04975	
		Connectiv	.00737	
		Utility Imp	.04560	
	Total Environmental (L: 260)		0.089	
Alternat		Conservat	.04146	
	Environmental (L: .260)	Wetland I	.01474	
		Recreatio	.03316	
	Total Socio-Economic (L: .310)		0.129	
		Approved	.04975	
	Socio-Economic (L: .310)	Controver	.03731	
		Right-of-w	.04146	
Total A			0.348	
	Total Engineering (L: .430)		0.178	
Alternat		Geometric	.04975	
Alemat	Engineering (L: .430)	Traffic Att	.04975	
		Connectiv	.03316	

Enter licer name

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

10/31/2018 3:47:20 PM

Alts	Level 1	Level 2	Prty
	Engineering (L: .430)	Utility Imp	.04560
	Total Environmental (L: 260)		0.089
		Conservat	.04146
	Environmental (L: .260)		.03316
Alternat		Recreatio	.01474
	Total Socio-Economic (L: .310)		0.080
		Approved	.02211
	Socio-Economic (L: .310)		.01658
		Right-of-w	.04146

Appendix B: Reference Documents

A. Reference Documents

- 1. CFX 2040 Master Plan
- 2. Lake-Sumter MPO 2040 Long Range Transportation Plan
- 3. MetroPlan Orlando 2040 Long Range Transportation Plan
- 4. CFX 2019-2023 Five Year Work Plan
- 5. West Orange/South Lake Transportation and Economic Development Transportation Plan

B. Companion Documents

- 1. Project Environmental Impact Report
- 2. Contamination Screening Evaluation Report
- 3. Natural Resources Evaluation
- 4. Typical Section Package
- 5. Water Quality Impact Evaluation
- 6. Location Hydraulic Report
- 7. Pond Siting Report
- 8. Noise Study Report
- 9. Corridor Analysis Report
- 10. Project Traffic Analysis Report
- 11. Utility Assessment Report
- 12. Cultural Resource Assessment Survey

Appendix C: Utility Conflicts

Table C-1 - Existing Utilities

Utility & Contact Information	Utility Type	Description	Remarks
AT&T Local Transmission	Fiber, Communication Lines	Buried Cable 2'-2" Conduit	 Runs parallel along Schofield Road on the south side in the 16'-6" Easement from approxima (End Project) Runs parallel along South Bradshaw Road on the east side in the 16'-6" Easement from sout Run parallel along US 27 in the existing US 27 right-of-way on the east side from South Brad (Begin Project)
AT&T Florida	Fiber, Communications Lines		 No existing utilities located within the project limits
Century Link	Fiber. Telephone	Buried Telephone	 Runs parallel along Cook Road on the east side at approximately STA 194<u>+ (25 BT)</u> Runs parallel along US 27 within the entire project limits on the west side (200 BT - pending Runs perpendicular to US 27 approximately .25 <u>+</u> miles south of Frank Jarrell Road Runs parallel along Schofield Road on the north side approximately .15 <u>+</u> miles east of the p Runs parallel along Schofield Road on the south side from the proposed Valencia Pkwy to SF Runs parallel along Schofield Road on the north side from the proposed Valencia Pkwy to SF Runs parallel along Schofield Road on the proposed Valencia Pkwy to SF
		Buried Fiber Optic	 Runs parallel along US 27 within the entire project limits on the west side (BFO 24 – pending Runs parallel along US 27 within the entire project limits on the west side (BFO 288) Runs parallel along US 27 on the west side from Frank Jarrell Road down south to end of pro Runs perpendicular to US 27 at Frank Jarrell Road (BFO 24 – pending removal)
		Conduit System 25 BT and 24 FOC	Runs parallel along US 27 on the west side from Frank Jarrell Road down south to end of pro
Duke Energy Florida	Electric/ Transmission	OE 69kV Overhead Transmission	Runs parallel along US 27 within the entire project limits on the east side
		Existing 16" PVC Water Main (buried)	Runs parallel along US 27 within the entire project limits on the west side
Lake Utilities Inc	Water	Existing 8" PVC Force Main (buried)	 Runs parallel along US 27 within the entire project limits on the east side from .15 miles <u>+</u> so Runs perpendicular to US 27
		Proposed 12" Force Main (buried)	• Runs parallel along US 27 on the east side from the begin project northern limits to approxim
Level 3 Communications, LLC (fka TW Telecom)	Fiber, Communication Lines		 No existing utilities located within the project limits.
Orange County Utilities	Wastewater		Conserve II pipeline - see Water Conserv II for location
Orlando Telephone Company dba Summit Broadband	Fiber, Communication Lines	Overhead Fiber Optic Cable	Runs parallel along US 27 within the entire project limits on the west side
Smart City Solutions	Fiber, Telephone		 No existing utilities located within the project limits
Bright House Networks Charter		No Response	No Response
		Single Phase Line	Runs parallel along Cook Road on the East side
Sumter Electric Cooperative	Energy	Two Phase Line	• Runs parallel along Frank Jarrell Road on the south side starting from the intersection of US
(3200)		Three Phase Line	 Runs parallel along US 27 within the entire project limits on the west side
Verizon Business f/k/a MCI	Fiber		No existing utilities located within the project limits
Water Conserv II	Wastewater	Buried	 Runs parallel along Cook Road on the west side Runs parallel with the preferred alternative at approximately STA 192<u>+</u> where the wastewat Runs parallel with Schofield Road on the south side throughout the entire project study limi Runs perpendicular to Schofield Road at approximately STA 342+ where it crosses Schofield

tely one mile west o	of Cook Road to	east of SR 429 In	terchange
----------------------	-----------------	-------------------	-----------

th of Trout Lake to US 27 intersection. dshaw Road to approximately 0.5 miles south of Frank Jarrell Road

g removal)

proposed Valencia Pkwy up to the proposed Valencia Pkwy (50 BT) R 429/end of project limits (50 BT)

R 429/end of project limits (50 BT – not in service) ag removal)

oject limits (BFO 144 – pending removal)

oject limits

outh of Frank Jarrell Road to the southern end of project limits

imately .15 miles <u>+</u> south of Frank Jarrell Road

5 27 continuing to the east outside of the proposed right of way

iter line goes into a property parcel. iits d Road

Appendix D: FEMA Firm Maps

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base** Flood Elevations (BFEs) and/or flood/ways have been determined. users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Sillwater Elevations tables contained within the Flood Insurance Study (FIS) perop that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance raining purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report hould be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations (BFEs) shown on this map apply only landward of 0.0° North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Sillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Sillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodways data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Transverse Mercator State Plane Florida East FIPS 0901. The horizontal datum was NAD63 HARN, GRS 1980 spheroid. Differences in datum, spheroid, projection or State Plane zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1985. These flood elevations must be compared to shucture and ground elevations between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, wist the National Geodetic Survey website at <u>http://www.nas.nosa.gov/</u> or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at <u>http://www.ngs.noaa.gov/</u>.

Base map information shown on this FIRM was provided in digital format by Lake County and the Florida Geographic Data Library. Orthophotography was collected in 2009 by the Southwest Florida and St. Johns River Water Management District.

This map reflects more detailed and up-to-date stream channel configurations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels: community may repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

For information and questions about this map, available products associated with this FIRM including historic versions of this FIRM, how to order products or the National Flood Insurance Program in general, please call the FEMA Mapping Information eXchange at 1:877-EHM-AM9 (1673-333:622) or visit the FEMA Map Service website at <u>http://www.msc.fema.gov</u>]. Available products may include previously issued Letters of Map Change, a Flood Insurance Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the website. Users may determine the current map date for each FIRM panel by visiting the FLMA Map Service Center website or by calling the FLMA Map Information eXchange.

The "profile base lines" depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data. the "profile base line", in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The **community map repository** should be consulted for possible updated or additional flood hezard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-root elevations. These BFEs are intended for flood insurance rating purposes only and flood elevation data presentied in the FIS report hardual be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0" North American Vortical Datum of 1988 (NVND 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on the FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the hadronal Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control structures**. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was State Plane Florida East FIPS Zone 0901. The horizontal datum was NADA3. GRS1980 spheroid Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical **datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1923 and the North American Vertical Datum of 1988, visit the National Geodetic Survey weshis at <u>http://www.nos.nosa.gov/</u> or contact the National Geodetic Survey at the following address:

Spatial Reference System Division National Geodetic Survey, NOAA Silver Spring Metro Center 1315 East-West Highway Silver Spring, Maryland 20910 (301) 713-3191

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at <u>http://www.ngs.noaa.gov/</u>.

Base map information shown on this FIRM was provided in digital format by Orange County, Florida.

This map reflects more detailed and up-to-date **stream channel configurations** than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transforred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study report (which contains authoritable hydraulic otab) may reflect stream channel distances that differ from what is shown on this map.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact the FEMA Map Service Center at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include prevously seal cletters of Map Change, a Picod instraince Study report and/or digital versions of this map. The FEMA Map Service Center may also be reached by Fax at 1-800-358-9620 and its workster at <u>htt://www.mscfema.ou/</u>.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-377-FEMA MAP** (1-877-336-2627) or visit the FEMA website at <u>http://www.fema.gov/business/nfip/</u>

Watershed Name	Minimum Conversion	Maximum Conversion	Average Conversion	Maximum Offset
Big Econlockhatchee River	-1.03	-1.15	-1.09	0.06
Boggy Creek	-0.91	-1.01	-0.96	0.05
Cypress Creek	-0.87	-0.91	-0.89	0.02
Howell Branch	-0.96	-1.05	-0.98	0.07
Lake Apopka	-0.87	-0.97	-0.91	0.06
Lake Hart	-0.97	-1.07	-1.02	0.05
Little Econlockhatchee River	-0.92	-1.07	-1.01	0.09
Little Wekiva River	-0.91	-1.02	-0.95	0.07
Reedy Creek	-0.86	-0.89	-0.88	0.02
Shingle Creek	-0.88	-0.95	-0.91	0.04
St. Johns River	-1.08	-1.33	-1.19	0.14
Wekiva River	-0.88	-1.01	-0.94	0.07

Appendix E: Public Involvement

Public Involvement Plan
PUBLIC INVOLVEMENT PROGRAM

Lake / Orange County Connector (US 27 to SR 429) Feasibility / Project Development and Environment (PD&E) Study

This Public Involvement Program is submitted to the Central Florida Expressway Authority for review, acceptance, and approval.

Submitted By:

Kelly Hiden

(0

The Valerin Group, Inc.

201

Date:

Accepted By:

Jonathan Williamson, AICP Central Florida Expressway Authority – General Engineering Consultant

Date:

Approved By:

Brian Hutchings Senior Communications Specialist Central Florida Expressway Authority

Date:

William Sloup, P.E. Metric Engineering

ine

PUBLIC INVOLVEMENT PROGRAM

Lake / Orange County Connector (US 27 to SR 429) Feasibility / PD&E Study Lake and Orange Counties, Florida

The purpose of this Public Involvement Program (PIP) is to assist in the exchange of information between the Central Florida Expressway Authority (CFX) and concerned residents, organizations, private groups (residential/business/special interest), and governmental agencies. The overall goal of this plan is to help ensure that the study reflects the values and needs of the communities it is designed to benefit. A schedule of events and list of documents (as they are created) exhibiting compliance with these procedures are included in the project file.

I. Description of Proposed Improvements

The proposed Lake / Orange County Connector extends from US 27 in south Lake County to SR 429 in west Orange County, a distance of approximately five (5) miles. The study includes an evaluation of a proposed interchange with the future extension of County Road 455 in Lake County. The Lake / Orange County Connector is identified in the CFX Visioning + 2040 Master Plan, the MetroPlan Orlando 2040 Long Range Transportation Plan and the Lake-Sumter 2040 Long Range Transportation Plan.

Project Limits:	The study area limits are generally described as: Porter Road on the north; SR 429 on the east; Old YMCA Road on the south; and US 27 on the west.
Counties:	Lake and Orange
Proposed Activity:	Assess the feasibility and viability of a Lake / Orange County connection as a toll road under the CFX Master Plan policy for new projects as a system expansion.
CFX Project Number:	599-225
Contract Number:	001344

Project Contact Information

For information regarding this project contact:

CFX Director of Engineering

Glenn M. Pressimone, P.E. Central Florida Expressway Authority 4974 ORL Tower Road Orlando, FL 32807 Office: 407-690-5000 Fax: 407-690-5011 E-mail: <u>Glenn.Pressimone@CFXway.com</u>

Consultant Project Manager William Sloup, P.E. Metric Engineering 615 Crescent Executive Court, Suite 524 Lake Mary, FL 32746 Office: 407-644-1898 ext. 1114 E-mail: William.Sloup@metriceng.com

Public Involvement Program

П. Project Background

The County Commissioners that represent the districts in south Lake and west Orange counties have requested that the CFX consider a new tolled connection between US 27 and SR 429. This new regional connector has been previously studied in the SR 408 Western Extension Study (CFX 2002); the Wellness Way Corridor Feasibility Study (Orange/Lake Parkway Partners LLC 2013); and the Wellness Way Sector Plan (Lake County 2013). Additionally, traffic and revenue feasibility studies were performed in 2013 and again in 2017. The results of these studies showed that a long-term opportunity for CFX participation exists in developing a connector between US 27 and the SR 429 / Schofield Road interchange.

Using the results of previous studies as a foundation, a feasible corridor for the proposed toll road will first be identified. Several alignments within the corridor will then be developed and evaluated to identify a preferred alternative. All factors related to the design and location of the facility will be considered, including; transportation needs, financial feasibility, social impacts, economic factors, environmental impacts, engineering analysis, and right-of-way requirements.

III. **Project Goals**

- Provide improved system connectivity / linkage.
- Accommodate anticipated transportation demand.
- Provide consistency with local and regional plans.
- Support economic viability and job creation.
- Support intermodal opportunities.
- Enhance evacuation and emergency services. •

IV. Identification of Agencies and Organizations

As part of the PIP, various local, regional, state, and federal agencies and/or organizations may be invited to participate as stakeholders, members of advisory groups, or as jurisdictional representatives. This includes local, regional, state and federal appointed and elected officials. A list of potential participants will be developed and vetted, with those applicable agencies and/or organizations being contacted by the CFX, General Engineering Consultant (GEC), or consultant project team. Other concerned public agencies or organizations that are identified throughout the study also will be contacted and invited to participate. The initial list of invitees is identified below; however, it is recognized that additional participants will likely be added as the study progresses. A final list of participants will be compiled and submitted at the end of the study.

V. Identification of and Outreach to Special Populations

This project spans southwestern Orange County and southeastern Lake County. The demographics of the study area were obtained through Census Place Sociocultural Data Reports (SDR) for the Clermont, Four Corners, Horizon West, and Winter Garden areas, which are attached to this PIP as well as the County level SDRs for Lake and Orange counties.

Public Involvement Program

The area demographics indicate less than 5% percent of the population within the study area are limited English proficient. Therefore, it has been determined that there is no need for outreach in any language other than English.

VI. **Outreach Resources**

The following media outlets may be engaged to notify the public of the proposed new connector roadway study, project meetings, and to solicit public input in the study process.

NEWSPAPERS:

Orlando Sentinel 633 North Orange Avenue Orlando, FL 32801 citydesk@orlandosentinel.com 407-420-5000

Clermont News Leader 637 Eighth Street Clermont, FL 34711 635-242-9818 Linda Briody lbriody@cfl.rr.com

Orlando Sentinel – Lake Zone Jerry Fallstrom ifallstrom@orlandosentinel.com lakesentinel@orlandosentinel.com 407-420-5920

West Orange Times 720 South Dillard Street Winter Garden, FL 34787 407-656-2121 contact@orangeobserver.com

RADIO:

WMFE 90.7 11510 E. Colonial Drive Orlando, FL 32817 407-273-2300 wmfenews@wmfe.org

WDBO 96.5 4192 N. John Young Parkway Orlando, FL 32804 407-281-2000 Joe Kelley – news director joe.kelley@coxinc.com

WTKS RealRadio 104.1 2500 Maitland Center Parkway, Suite 401 Orlando, FL 32751 407-916-1041

WWKA K92.3 4192 N. John Young Parkway Orlando, FL 32817 407-298-9292

WMMO 98.9 4192 N. John Young Parkway Orlando, FL 32804 407-422-9890

WOMX Mix 105.1 1800 Pembroke Drive Orlando, FL 32810 407-919-1000 Susan Korgul – PSA/Community Requests Susan.korgul@entercom.com

Public Involvement Program

Lake / Orange County Connector (US 27 to SR 429) Feasibility / PD&E Study

Page 4 CENTRAL

TELEVISION:

WESH News Channel 2 NBC/WKCF CW18 1021 North Wymore Road Winter Park, FL 32789 407-645-2222 Iboutte@hearst.com

WFTV Channel 9 ABC 409 E. South Street Orlando, FL 32801 407-822-8380 news@wftv.com WKMG Channel 6 CBS 4466 N. John Young Parkway Orlando, FL 32804 407-521-1323 <u>desk@wkmg.com</u>

Spectrum News 13 20 N. Orange Avenue, Suite 13 Orlando, FL 32801 407-513-1313 <u>n-13-desk@charter.com</u>

WOFL Fox 35 35 Skyline Drive Lake Mary, FL 32746 407-741-5027 woflweb@foxtv.com

Additional outreach methods will be employed throughout the study, in order to keep the public engaged in the process, including the following:

ADVISORY GROUPS

A Project Advisory Group (PAG), and an Environmental Advisory Group (EAG) including staff from FDOT, Lake and Orange counties, permitting agencies, environmental organizations, special interest groups and other entities as identified by CFX will be formed. A preliminary mailing list of invitees to participate on both the PAG and EAG is included at the end of this document. The project team will meet with each advisory group up to three (3) times during the PD&E Study to present information about the project, receive input, and respond to questions.

PROJECT KICK-OFF LETTER

An informational project kick-off letter will be distributed to FDOT, MetroPlan Orlando, Lake-Sumter MPO, Lake County, Orange County, the East Central Florida Planning Council, public utility owners, environmental regulatory agencies and any group or individual that expressed an interest in the study.

PUBLIC NOTICES

Public notices will consist of display advertisements published in the publications with the largest circulation in the project's study area, prior to any public meeting, following the guidelines outlined in the PD&E Manual, Part I, Chapter 11. Public notices will also be placed in the Florida Administrative Register (FAR) and published on CFX's public meeting notices website at least seven (7) days prior to each public meeting.

PUBLIC ANNOUNCEMENTS

A project information flyer may be developed and distributed to organizations such as neighborhood associations/civic groups, and local governments to publish in existing newsletters and on websites. All correspondence will be coordinated with CFX's Public Involvement Consultant (PIC) and Public Affairs and Communications Department prior to distribution.

DIRECT MAIL

The following will be contacted by direct mail in order to obtain input into the project development process and/or in order to provide project information:

- Those whose property lies, in whole or part, within a minimum of 300 feet on either side of the centerline of each project alternative (Section 339.155 F.S.), as well as other local citizens who may be impacted by the construction of this project. This portion of the mailing list will be based on the County Property Appraiser's tax rolls.
- Local elected and appointed public officials for Lake County
- Local elected and appointed public officials for Orange County
- Project Advisory Group (PAG)
- Environmental Advisory Group (EAG)
- Public and private groups, organizations, agencies or businesses that request to be placed on the mailing list for this project

WEBSITE

A study webpage was established on the CFX website at the start of the project and will be maintained throughout its duration as a means of updating the general public on a frequent basis. Information will be provided to CFX via the PIC four (4) times during the project: (1) prior to the public kick-off meeting, (2) prior to the alternatives public workshop, (3) prior to the public hearing, and (4) at the project completion.

NEWSLETTERS

Four (4) project newsletters designed to inform interested parties of the project status, will be prepared and distributed at key milestones during the study: (1) prior to the public kick-off meeting, (2) prior to the alternatives public workshop, (3) prior to the public hearing, and (4) at the project completion. These newsletters will be distributed to interested parties, elected and appointed officials, property owners, special interest groups, etc., as identified above. Newsletters will also be posted on the project webpage.

VII. PUBLIC MEETINGS

The following informational meetings will be held to involve the public and interested agencies in the study process and to inform interested parties of the project's current status:

Project Kick-Off Meeting - The purpose of this meeting is to present the public with a general study overview, project area information and anticipated schedule. Visual displays will be available for review. The format of this meeting will be an open house to informally answer questions and receive comments from meeting attendees.

- Meeting Preparation Meeting coordination, including location arrangements, ٠ equipment supply, set up of outdoor signs, tables, chairs and other equipment, preparation of letters, handouts and slide presentation materials, will be the responsibility of the consultant project team and coordinated through the PIC and GEC. All work products will be reviewed by the PIC and GEC on behalf of the CFX.
- Meeting Location Proposed meeting locations are the Marriott Springhill Suites at • Flamingo Crossings, 13279 Flamingo Crossings Boulevard, Winter Garden, FL 34787; or the TownePlace Suites by Marriott Orlando at Flamingo Crossing, 13295 Flamingo Crossings Boulevard, Winter Garden, FL 34787. The meeting sites meet all ADA requirements.

Alternatives Public Workshop - The purpose of this meeting is to present to the public the results of the study to date and obtain comments on the alternatives that are being considered. Visual displays will be available for review. The format of this meeting will be an open house to informally answer questions and receive comments from meeting attendees.

- Meeting Preparation Meeting coordination, including location arrangements, • equipment supply, set up of outdoor signs, tables, chairs and other equipment, preparation of letters, handouts and slide presentation materials, will be the responsibility of the consultant project team and coordinated through the PIC and GEC. All work products will be reviewed by the PIC and GEC on behalf of the CFX.
- Meeting Location Proposed meeting locations are the Marriott Springhill Suites at ٠ Flamingo Crossings, 13279 Flamingo Crossings Boulevard, Winter Garden, FL 34787; or the TownePlace Suites by Marriott Orlando at Flamingo Crossing, 13295 Flamingo Crossings Boulevard, Winter Garden, FL 34787. The meeting sites meet all ADA requirements.

Public Hearing - The purpose of this meeting is to present the public with the recommended alternative. The format of this meeting will be a public hearing. A court reporter will be present and will provide a verbatim transcript of the hearing.

- Meeting Preparation Meeting coordination, including location arrangements, • equipment supply, set up of outdoor signs, tables, chairs and other equipment, preparation of letters, handouts and slide presentation materials, will be the responsibility of the consultant project team and coordinated through the PIC and GEC. All work products will be reviewed by the PIC and GEC on behalf of the CFX.
- Meeting Location Proposed meeting locations are the Marriott Springhill Suites at • Flamingo Crossings, 13279 Flamingo Crossings Boulevard, Winter Garden, FL 34787; or the TownePlace Suites by Marriott Orlando at Flamingo Crossing, 13295 Flamingo Crossings Boulevard, Winter Garden, FL 34787. The meeting sites meet all ADA requirements.

Board Meetings - The study team will support CFX as needed in meetings to apprise the CFX, Lake Sumter MPO, MetroPlan Orlando, Lake County Board of County Commissioners and Orange County Board of County Commissioners of the project status and to receive input from meeting attendees.

PAG and EAG Meetings - The purpose of these meetings is to apprise PAG and EAG representatives of the project status and to receive input from meeting attendees. Meetings will be held at project kick-off, prior to the Alternatives Public Workshop, and prior to the Public Hearing.

Informal Meetings - Meetings, as required and approved by CFX, will be held with city/county officials, civic groups, concerned individuals and citizen groups specific to this study segment. The purpose of these meetings will be to apprise attendees of the project status and to receive input from meeting attendees.

Activity	Estimated Date
Public Involvement Plan	June 2018
Mailing List	June 2018
PAG and EAG Project Kick-off Meeting	August 2018
Public Informational Meeting (Corridors)	August 2018
PAG and EAG Pre-Public Workshop Meeting	January 2019
Public Informational Meeting (Alternatives)	January 2019
PAG and EAG Closeout Meeting	April 2019
Public Hearing	June 2019

Public Outreach Activity Schedule

VIII. COORDINATION WITH LAKE AND ORANGE COUNTY

Extensive coordination is planned with county staff and representatives. Included in the coordination are currently unscheduled meetings, ongoing dialogue, and coordination with county departments. As part of the coordination, copies of aerial maps depicting alignment and design concepts under consideration,

Public Involvement Program

and other project information will be shared with county planning staff and representatives for review and input. Updated information will also be forwarded to the counties for review prior to the scheduled public meetings.

IX. ANALYSIS AND SUMMARY OF PUBLIC COMMENTS

A Public Meeting Summary will be developed to summarize the public meeting results. The meeting summary will include advertisements and legal notices, fact sheets, meeting notes, sign-in sheets, comment sheets, and responses to comments and inquiries (if appropriate). The study team will prepare all letters of response for review and concurrence by CFX prior to being mailed to the person or group who posed the question or comment.

X. EVALUATION OF THE PUBLIC INVOLVEMENT PROGRAM

A public involvement evaluation process will be developed to assess the effectiveness of the public involvement efforts utilized throughout this study. This process will include identification of the public involvement tools, establishment of performance measures, performance evaluations, and identification of improvement strategies.

XI. PUBLIC INVOLVEMENT DURING THE STUDY

The Consultant Project Manager will maintain the appropriate level of public involvement activities throughout the study process. These public involvement activities may include additional coordination meetings with local government and environmental permitting agencies, work sessions, and small group meetings, as directed by and coordinated with CFX.

ETDM SOCIOCULTURAL DATA REPORTS: Lake County Profile **Orange County Profile Census Place – Clermont Census Place – Four Corners Census Place – Horizon West Census Place – Winter Garden**

County Demographic Profile

Lake

Area: 1,157.198 square miles Jurisdiction(s):

Cities: Astatula, Leesburg, Minneola, Tavares, Apopka, Umatilla, Wildwood, Clermont, Eustis, Oakland, Mount Dora, Fruitland Park, Montverde, Mascotte, Lady Lake, Groveland, Howey-in-the-hills

1

1

General Population Trends

Description	1990	2000	2010 (ACS)	2016(ACS)
Total Population	152,104	210,528	291,671	317,586
Total Households	63,616	88,413	117,544	122,036
Average Persons per Acre	0.206	0.284	0.394	0.429
Average Persons per Household	2.391	2.339	2.00	2.57
Average Persons per Family	2.793	2.81	2.991	3.187
Males	72,929	101,901	141,653	153,595
Females	79.175	108.627	150.018	163.991

Claimed 2 or More Races (after 1990) Hispanic or Latino of Any Race (1990 only)

Race and Ethnicity Trends Description 1990 2000

Description	1990	2000	2010 (ACS)	2016(ACS)
White Alone	135,619	184,147	242,871	265,082
	(89.16%)	(87.47%)	(83.27%)	(83.47%)
Black or African	14,191	16,878	27,189	31,492
American Alone	(9.33%)	(8.02%)	(9.32%)	(9.92%)
Native Hawaiian and Other Pacific Islander Alone	(NA)	44 (0.02%)	243 (0.08%)	372 (0.12%)
Asian Alone	537	1,422	4,986	5,790
	(0.35%)	(0.68%)	(1.71%)	(1.82%)
American Indian or Alaska Native Alone	384 (0.25%)	810 (0.38%)	1,123 (0.39%)	1,339 (0.42%)
Some Other Race Alone	1,344	4,293	10,271	6,378
	(0.88%)	(2.04%)	(3.52%)	(2.01%)
Claimed 2 or More	(NA)	2,934	4,988	7,133
Races		(1.39%)	(1.71%)	(2.25%)
Hispanic or Latino	4,305	11,836	33,115	43,852
of Any Race	(2.83%)	(5.62%)	(11.35%)	(13.81%)
Not Hispanic or	147,799	198,692	258,556	273,734
Latino	(97.17%)	(94.38%)	(88.65%)	(86.19%)
Minority	75,687	33,261	75,687	89,268
	(49.76%)	(15.80%)	(25.95%)	(28.11%)

Age Trends

Description	1990	2000	2010 (ACS)	2016(ACS)	10
Under Age 5	5.64%	5.21%	5.60%	5.09%	ç
Ages 5-17	14.26%	15.07%	15.28%	14.80%	8
Ages 18-21	4.03%	3.43%	3.80%	3.94%	
Ages 22-29	8.61%	6.95%	7.60%	8.03%	(
Ages 30-39	12.30%	12.57%	10.78%	10.43%	I
Ages 40-49	10.46%	12.79%	13.37%	11.90%	
Ages 50-64	17.24%	17.60%	19.77%	19.87%	
Age 65 and Over	27.47%	26.39%	23.79%	25.94%	-
-Ages 65-74	16.20%	14.39%	13.16%	14.21%	
-Ages 75-84	9.08%	9.23%	8.15%	8.80%	
-Age 85 and Over	2.19%	2.77%	2.48%	2.94%	
Median Age	NA	45	45	47	

Income Trends					
Description	1990	2000	2010 (ACS)	2016(ACS)	
Median Household Income	\$23,395	\$36,903	\$46,477	\$47,141	
Median Family Income	\$27,149	\$42,577	\$55,935	\$57,655	
Population below Poverty Level	11.03%	9.63%	11.04%	13.50%	
Households below Poverty Level	10.83%	9.15%	10.09%	12.82%	
Households with Public Assistance Income	5.62%	2.09%	1.60%	1.92%	

Households with Public Assistance Income

Disability Trends

See the Data Sources section below for an explanation about the differences in disability data among the various vears

Description	1990	2000	2010 (ACS)	2016(ACS)
Population 16 To 64 Years with a disability	8,877 (7.18%)	27,445 (13.98%)	NA (NA)	NA (NA)
Population 20 To 64 Years with a disability	NA (NA)	NA (NA)	NA (NA)	20,782 (12.71%)

Educational Attainment Trends

Age 25 and Over			1	1	1
Description	1990	2000	2010 (ACS)	2016(ACS)	-
Less than 9th Grade	11,447	8,889	8,297	9,467	1
9th to 12th Grade, No Diploma	21,453	22,593	19,503	18,921	
High School Graduate or Higher	79,082	124,090	183,884	203,912	
Bachelor's Degree or Higher	14,277	25,811	42,895	50,336	

Language Trends

Age 5 and Over				
Description	1990	2000	2010 (ACS)	2016(ACS)
Speaks English Well	1,789	2,875	6,005	6,956
Speaks English Not Well	NA	2,194	4,180	4,078
Speaks English Not at All	NA	845	1,448	1,497
Speaks English Not Well or Not at All	1,337	3,039	5,628	5,575

Housing Trend	ls .			
Description	1990	2000	2010 (ACS)	2016(ACS)
Total	75,707	102,830	141,568	147,372
Units per Acre	0.102	0.139	0.191	0.199
Single-Family Units	35,354	61,494	93,896	98,931
Multi-Family Units	7,020	10,107	15,419	18,649
Mobile Home Units	20,828	30,549	32,032	29,316
Owner-Occupied Units	49,839	72,047	92,476	90,282
Renter-Occupied Units	13,777	16,366	25,068	31,754
Vacant Units	12,091	14,417	24,024	25,336
Median Housing Value	\$67,400	\$83,700	\$178,400	\$145,100
Occupied Housing Units w/No Vehicle	4,335 (6.81%)	4,733 (5.35%)	4,533 (3.86%)	6,713 (5.50%)

Location Maps

County Demographic Profile

Orange

 Area:
 1,003.453 square miles

 Jurisdiction(s):
 Cities: Orlando, Edgewood, Belle Isle, Maitland, Bay Lake, Lake Buena Vista, Kissimmee, Winter Garden, Eatonville, Casselberry, Apopka, Altamonte Springs, Winter Park, Windermere, Oakland, Mount Dora, Occee

General Population Trends

Description	1990	2000	2010 (ACS)	2016(ACS)
Total Population	677,491	896,344	1,116,094	1,256,055
Total Households	254,852	336,286	406,002	444,852
Average Persons per Acre	1.054	1.396	1.738	1.956
Average Persons per Household	2.658	2.609	3.00	2.75
Average Persons per Family	3.149	3.241	3.379	3.486
Males	336,061	442,441	550,254	617,633
Females	341,430	453,903	565,840	638,422

Race and Ethnicity Trends Description 1990 2000 2010 2016(ACS) (ACS) White Alone 539,061 615,706 717,711 807,479 (79.57%) (68.69%) (64.29%) (64.31%)103,092 161,558 Black or African 226,111 263,131 American Alone (15.22%) (18.02%) (20.95%) (20.26%) Native Hawaiian 853 1,547 578 and Other Pacific (NA) (0.10%) (0.14%)(0.05%) Islander Alone 64.845 Asian Alone 13.469 28.748 53.326 (1.99%)(3.21%)(4.78%) (5.16%)American Indian or 2,036 2,862 3,560 2,311 Alaska Native (0.30%)(0.32%) (0.32%) (0.18%) Alone Some Other Race 19,308 52,568 85,645 76,386 Alone (2.85%) (5.86%) (7.67%)(6.08%) Claimed 2 or More 34,049 28,194 41,325 (3.80%) (2.53%)(3.29%) Races (NA) Hispanic or Latino 64,946 168,191 287,760 368,503 of Any Race (9.59%) (18.76%)(25.78%) (29.34%) Not Hispanic or 612.545 728.153 828.334 887.552 (90.41%)(74.22%) (70.66%) Latino (81.24%) 380,320 619,202 Minority 619,202 720,260 (91.40%) (42.43%) (55.48%) (57.34%)

Claimed 2 or More Races (after 1990) Hispanic or Latino of Any Race (1990 only)

Age Trends

Description	1990	2000	2010 (ACS)	2016(ACS)	1
Under Age 5	7.36%	6.81%	6.69%	6.29%	
Ages 5-17	16.48%	18.35%	17.35%	16.47%	
Ages 18-21	7.25%	6.19%	7.08%	6.51%	
Ages 22-29	15.98%	12.79%	13.88%	13.73%	
Ages 30-39	18.06%	17.43%	14.88%	14.74%	
Ages 40-49	11.98%	15.36%	14.79%	13.90%	
Ages 50-64	12.26%	13.03%	15.93%	17.62%	
Age 65 and Over	10.63%	10.04%	9.40%	10.74%	
-Ages 65-74	6.51%	5.52%	5.18%	6.33%	
-Ages 75-84	3.16%	3.50%	3.07%	3.12%	
-Age 85 and Over	0.96%	1.02%	1.16%	1.30%	
Median Age	NA	33	33	34	

Income Trends	5				
Description	1990	2000	2010 (ACS)	2016(ACS)	
Median Household Income	\$30,252	\$41,311	\$50,138	\$49,391	
Median Family Income	\$34,670	\$47,159	\$57,473	\$57,993	
Population below Poverty Level	11.25%	12.11%	13.42%	17.34%	
Households below Poverty Level	10.35%	10.91%	12.68%	15.83%	
Households with Public Assistance Income	4.83%	2.50%	1.44%	1.97%	

Households with Public Assistance Income

Disability Trends

See the Data Sources section below for an explanation about the differences in disability data among the various vears

Description	1990	2000	2010 (ACS)	2016(ACS)
Population 16 To 64 Years with a disability	33,640 (6.57%)	119,793 (14.56%)	NA (NA)	NA (NA)
Population 20 To 64 Years with a disability	NA (NA)	NA (NA)	NA (NA)	68,092 (8.67%)

Educational Attainment Trends

Age 25 and Over Description	1990	2000	2010 (ACS)	2016(ACS)	4
Less than 9th Grade	29,815	31,431	36,515	39,546	3
9th to 12th Grade, No Diploma	61,781	73,160	56,288	62,118	3
High School Graduate or Higher	340,597	469,510	615,181	723,585	2
Bachelor's Degree or Higher	91,722	150,009	214,780	263,443	1

Language Trends

. .

.

_

Age 5 and Over				1
Description	1990	2000	2010 (ACS)	2016(ACS)
Speaks English Well	20,163	47,230	65,314	76,679
Speaks English Not Well	NA	30,937	49,410	52,508
Speaks English Not at All	NA	9,102	18,544	21,134
Speaks English Not Well or Not at All	13,943	40,039	67,954	73,642

Housing Irend	IS			
Description	1990	2000	2010 (ACS)	2016(ACS)
Total	282,686	361,349	474,757	508,562
Units per Acre	0.44	0.563	0.739	0.792
Single-Family Units	161,010	227,164	297,590	318,161
Multi-Family Units	73,974	113,760	156,040	169,767
Mobile Home Units	17,720	20,068	21,038	20,447
Owner-Occupied Units	151,062	204,230	243,095	241,420
Renter-Occupied Units	103,790	132,056	162,907	203,432
Vacant Units	27,834	25,063	68,755	63,710
Median Housing Value	\$81,000	\$100,300	\$228,600	\$173,700
Occupied Housing Units w/No Vehicle	18,991 (7.45%)	24,460 (7.27%)	23,926 (5.89%)	29,096 (6.54%)

Location Maps

Sociocultural Data Report

Clermont

Area:	15.845 square miles
Jurisdiction(s):	Cities: Minneola, Clermont, Groveland Counties:Lake

General Population Trends

Description	1990	2000	2010 (ACS)	2016(ACS)
Total Population	6,985	9,620	21,096	22,280
Total Households	2,766	3,667	7,890	7,681
Average Persons per Acre	2.36	2.26	3.40	3.66
Average Persons per Household	2.74	2.54	2.62	2.90
Average Persons per Family	3.04	3.04	3.00	3.45
Males	3,292	4,710	10,034	11,196
Females	3,693	4,910	11,062	11,084

Description	1990	2000	2010 (ACS)	2016(ACS)
White Alone	5,767	7,958	15,306	16,615
	(82.56%)	(82.72%)	(72.55%)	(74.57%)
Black or African	1,106	1,178	2,980	2,895
American Alone	(15.83%)	(12.25%)	(14.13%)	(12.99%)
Native Hawaiian and Other Pacific Islander Alone	0 (0.00%)	0 (0.00%)	25 (0.12%)	0 (0.00%)
Asian Alone	36	62	741	1,010
	(0.52%)	(0.64%)	(3.51%)	(4.53%)
American Indian or Alaska Native Alone	9 (0.13%)	28 (0.29%)	95 (0.45%)	129 (0.58%)
Some Other Race	66	274	1,148	1,094
Alone	(0.94%)	(2.85%)	(5.44%)	(4.91%)
Claimed 2 or More	NA	120	801	537
Races	(NA)	(1.25%)	(3.80%)	(2.41%)
Hispanic or Latino	153	762	3,913	4,920
of Any Race	(2.19%)	(7.92%)	(18.55%)	(22.08%)
Not Hispanic or	6,832	8,858	17,183	17,360
Latino	(97.81%)	(92.08%)	(81.45%)	(77.92%)
Minority	1,300	2,162	8,289	9,762
	(18.61%)	(22.47%)	(39.29%)	(43.82%)

-	
	Tranda
ACIE	renos
190	1101100

Description	1990	2000	2010 (ACS)	2016(ACS)	1
Under Age 5	7.20%	6.96%	6.08%	5.14%	
Ages 5-17	16.32%	19.15%	18.82%	20.91%	
Ages 18-21	5.00%	4.16%	5.04%	4.44%	
Ages 22-29	10.67%	8.87%	9.05%	8.68%	
Ages 30-39	14.37%	15.90%	12.83%	12.00%	
Ages 40-49	11.01%	15.96%	15.41%	14.30%	
Ages 50-64	14.13%	14.35%	17.86%	18.47%	
Age 65 and Over	21.30%	14.66%	14.93%	16.07%	
-Ages 65-74	11.02%	7.12%	8.62%	10.17%	
-Ages 75-84	7.57%	4.81%	4.48%	4.34%	
-Age 85 and Over	2.71%	2.71%	1.82%	1.55%	
Median Age	NA	36	38	41	

Median Age Comparison

Disability Trends

See the Data Sources section below for an explanation about the differences in disability data among the various years

Description	1990	2000	2010 (ACS)	2016(ACS)
Population 16 To 64 Years with a disability	342 (6.66%)	1129 (12.85%)	(NA)	(NA)
Population 20 To 64 Years with a disability	(NA)	(NA)	(NA)	930 (7.55%)

Educational Attainment Trends

Age 25 and Over Description	1990	2000	2010 (ACS)	2016(ACS)	8, 7,
Less than 9th	380	315	329	499	6
Grade	(8.28%)	(4.94%)	(2.54%)	(3.41%)	
9th to 12th Grade,	776	686	684	747	5
No Diploma	(16.92%)	(10.75%)	(5.27%)	(5.10%)	
High School	3,432	5,380	11,965	13,397	4
Graduate or Higher	(74.82%)	(84.31%)	(92.19%)	(91.49%)	
Bachelor's Degree	840	1,481	3,471	4,323	2
or Higher	(18.31%)	(23.21%)	(26.75%)	(29.52%)	

Language Trends

Age 5 and Over	1990	2000	2010	2016(ACS)
Bocomption		2000	(ACS)	
Speaks English	44	184	538	602
Well	(0.70%)	(2.06%)	(3.00%)	(2.85%)
Speaks English Not	NA	103	321	315
Well	(NA)	(1.15%)	(1.79%)	(1.49%)
Speaks English Not at All	NA	31	56	167
	(NA)	(0.35%)	(0.31%)	(0.79%)
Speaks English Not	45	134	377	482
Well or Not at All	(0.71%)	(1.50%)	(2.10%)	(2.28%)

Housing Trends Description 2000 2016(ACS) 1990 2010 (ACS) Total 3,028 3,968 8,912 8,750 Units per Acre 0.40 0.57 1.37 1.32 6,422 Single-Family Units 1,734 2,970 6,812 **Multi-Family Units** 781 860 1,477 1,855 221 195 Mobile Home Units 135 83 Owner-Occupied 1,695 2,535 5,194 4,951 Units **Renter-Occupied** 2,696 1,071 1,133 2,730 Units 1,023 1,069 Vacant Units 262 301 Median Housing \$61,700 \$94,800 \$218,400 \$167,650 Value Occupied Housing Units w/No Vehicle 255 (6.95%) 308 234 190 (8.46%) (2.41%) (4.01%)

Median Housing Value Comparison

Occupied Units With No Vehicles Available

Existing	Land	Use
LAISting	Lana	030

Land Use Type	Acres	Percentage
Acreage Not Zoned For Agriculture	399	3.93%
Agricultural	66	0.65%
Centrally Assessed	0	0.00%
Industrial	71	0.70%
Institutional	304	3.00%
Mining	2	0.02%
Other	1,723	16.99%
Public/Semi-Public	313	3.09%
Recreation	637	6.28%
Residential	2,892	28.52%
Retail/Office	552	5.44%
Row	32	0.32%
Vacant Residential	1,011	9.97%
Vacant Nonresidential	686	6.76%
Water	0	0.00%
Parcels With No Values	52	0.51%

Location Maps

Holly Hill

Port Orange

(44)

46

(46)

Bithlo

Wedgefield

(5A)

Community Facilities

The community facilities information below is useful in a variety of ways for environmental evaluations. These community resources should be evaluated for potential sociocultural effects, such as accessibility and relocation potential. The facility types may indicate the types of population groups present in the project study area. Facility staff and leaders can be sources of community information such as who uses the facility and how it is used. Additionally, community facilities are potential public meeting venues.

Assisted Housing (Points)

Facility Name	Address	Zip Code
OSPREY RIDGE	201 HUNT STREET	34711
LAKEVIEW VILLAS LTD	200 12TH ST	32711
WOODCLIFF APTS.	1000 DISSTON AVENUE	34711
CLERMONT SANDS RRH	400-E HIGHLAND AVE	32711
SUNNY HILL	760 PITT STREET	34711

Community Centers (Points)

Facility Name	Address	Zip Code
KNIGHTS OF COLUMBUS 13240 - BLESSED SACRAMENT	720 12TH ST	34711
VFW POST 5277 - WILLIAM A. SUGGS MEMORIAL	855 W DESOTO ST	34711
CHAMBER OF COMMERCE - SOUTH LAKE	691 W MONTROSE ST	34711
AMERICAN LEGION POST 55	1063 W DESOTO ST	34711
MARINE CORPS LEAGUE DETACHMENT 1120	1063 W DESOTO ST	34711
ELKS LODGE 1848	705 W MINNEOLA AVE	34711

Cultural Centers (Points)

Facility Name	Address	Zip Code
THE MOONLIGHT THEATRE	732 W MONTROSE ST	34711
EPIC THEATRES	2405 S HWY 27	34711
SOUTH LAKE ART GALLERY	776 MONTROSE ST	34711
COOPER MEMORIAL LIBRARY	2525 OAKLEY SEAVER DR	34711

Fire Stations (Points)

Facility Name	Address	Zip Code
CLERMONT FIRE DEPARTMENT STATION 1	439 STATE ROAD 50	34711
CLERMONT FIRE DEPARTMENT STATION 2	2200 HARTWOOD MARSH RD	34711
CLERMONT FIRE DEPARTMENT STATION 3	2180 LEGENDS WAY	34711
CLERMONT FIRE DEPARTMENT SUPPORT	865 W MONTROSE ST	34711
LAKE COUNTY RESCUE STATION 32 (CLERMONT)	428 CHESTNUT ST	34711

Florida Parks and Recreational Facilities (Points)

Facility Name	Address	Zip Code
SEMINOLE PARK	12TH ST & SEMINOLE ST	34711
HANCOCK PARK	3301 HANCOCK RD	34711
LAKE HIAWATHA PRESERVE PLAYGROUND & DOG PARK (FORMERLY INLAND GROVES PARK)	HIGHWAY 561A	34711
WEST BEACH PARK	12TH ST & LAKE MINNEOLA DR	34711
VICTORY POINTE WETLAND PARK (WEST LAKE WETLANDS)	490 WEST AVE	34711
BLOXAM AVENUE PARK	BLOXHAM AVE & DESOTO ST	34712
LAKE HIAWATHA PRESERVE (FORMERLY INLAND GROVES PARK)	HIGHWAY 561A	34711
SOUTH LAKE LITTLE LEAGUE	1250 12TH ST	34711
BISHOP MEMORIAL FIELD	950 EAST AVE	34711
LAKE FELTER PARK	JOHNS LAKE RD	34711
PALATLAKAHA RECREATION AREA	1250 12TH ST	34711
SOUTH LAKE VETERANS MEMORIAL PARK	800 WEST OSCEOLA ST	34711
KIWANIS PARK	1452 4TH ST	34711

Facility Name	Address	Zip Code
VETERANS PARK	MINNEOLA AVE & CRYSTAL LAKE DR	34711
WATERFRONT PARK	EAST AVE & 8TH ST	34711
WEST PARK	650 W MONTROSE ST	34711
MONTROSE TOT LOT PARK	1169 MONTROSE ST	34711
PETER POOLE PARK / PARK OF INDIAN HILLS	LAKE SHORE DR & 12TH ST	34711
CLERMONT HISTORIC VILLAGE	490 WEST AVE	34711
KEHLOR PARK	466 W MINNEOLA AVE	34711
CHESTNUT STREET NEIGHBORHOOD PARK	290 CHESTNUT ST	34712
EDGEWOOD PARK PLACE	NORTH ST	34711
WEST MINNEOLA AVENUE PARK	617 8TH ST	34711

Government Building

Facility Name	Address	Zip Code
LAKE COUNTY HEALTH DEPARTMENT - CLERMONT OFFICE	560 W DESOTO ST	34711
CITY OF CLERMONT CITY HALL	685 W MONTROSE ST	34711
U S POST OFFICE - CLERMONT ANNEX	400 CITRUS TOWER BLVD	34711
U S POST OFFICE - CLERMONT	877 W MINNEOLA AVE	34711
LAKE COUNTY TAX COLLECTOR - SOUTH LAKE	194 N HWY 27	34711

Healthcare Facilities (Geocoded)

Facility Name	Address	Zip Code
MARY ROSE BOEHM M.D.	200 E HIGHLAND AVENUE, SUITE 2	34711
A PLUS PEDIATRICS PLLC	706 E GRAND HIGHWAY	34711
CLERMONT ANIMAL HOSPITAL	211 N HWY 27	34711
SUPERIOR RESIDENCES OF CLERMONT	1600 HUNT TRACE BOULEVARD	34711
PHYSICIANS MEDICAL GROUP LLC	825 OAKLEY SEAVER DRIVE	34711
THE BARRANCO CLINIC	1920 DON WICKHAM DRIVE 215	34711
SOUTH LAKE MEDICAL CENTER	1950 HOSPITAL VIEW WAY	34711
SOUTH LAKE HEALTH CLINIC	835 7TH STREET, SUITE B4	34711
ALLERGY ASTHMA SPECIALISTS PA-CLERMONT	3111 CITRUS TOWER BLVD U A	34711
NEYTON BALTODANO, M.D.	3125 CITRUSTOWER BLVD BLD C	34711
MID FLORIDA DERMATOLOGY ASSOC. INC	815 OAKLEY SEAVER DRIVE	34711
FABIO ECHAVARRIS, M.D., P.A.	1715 E STATE ROAD 50, BUILDING 3	34711
KIDSVILLE PEDIATRICS III, PA	1804 OAKLEY SEAVER BOULEVARD	34711
CLERMONT CANCER CENTER	1361 CITRUS TOWER BOULEVARD, FLOOR 2	34711
ORANGE DOC FAMILY MEDICINE, PLLC	835 7TH STREET, SUITE 5	34711
CLERMONT WIC	560 W DESOTO STREET	34711
VANGUARD MEDICAL CENTER	711 S HWY 27	34711
ADVANCED KIDNEY CARE OF CENTRAL FLORIDA	3175 CITRUS TOWER BLVD	34711
INTERCOMMUNITY CANCER INSTITUTE	1920 DON WICKHAM DRIVE, SUITE 130	34711
PHYSICIANS BUSINESS ALLIANCE	2020 OAKLEY SEAVER DRIVE	34711
WOMEN'S CARE FLORIDA LLC	2400 HOOKS STREET	34711
MEDICAL INTERVENTIONS OF CENTRAL FLORIDA	265 W STATE ROAD 50	34711
CLERMONT AMBULATORY SURGICAL CENTER	255 CITRUS TOWER BOULEVARD, SUITE 100	34711
BENNETT PEDIATRICS, LLC	365 CITRUS TOWER BLVD , UNIT 104	34711
LAKE FAMILY PRACTICE INC.	2105 HARTWOOD MARSH ROAD, SUITE 8	34711
ASSOCIATES IN DERMATOLOGY	1655 E HIGHWAY 50, SUITE 201	34711
SOUTH LAKE ENDOCRINOLOGY	1920 DON WICKHAM DRIVE, SUITE 325	34711
ADVANCED DERMATOLOGY	1920 DON WICKHAM DRIVE, SUITE 330	34711
TAKE CARE HEALTH SERVICES	701 E HWY 50	34711
MARHOLIN MEDICAL INSTITUTE	221 N HIGHWAY 27, SUITE G	34711
ADVANCED GASTROENTEROLOGY & SURGERY ASSOCIATES	255 CITRUS TOWER BOULEVARD	34711
SOUTH LAKE PEDIATRICS, P.A.	3155 CITRUS TOWER BOULEVARD	34711
THE CENTER FOR RETINA & MACULAR DISEASE	1655 E HWY 50, SUITE 204	34711
CLERMONT PEDIATRICS P.A.	861 OAKLEY SEAVER DRIVE	34711
MID-FLORIDA CARDIOLOGY SPECIALISTS	1920 DON WICKHAM DRIVE 225	34711
FLORIDA CANCER SPECIALISTS - CLERMONT	1920 DON WICKHAM WAY, SUITE 305	34711

Facility Name	Address	Zip Code
CENTRAL FLORIDA INTERNISTS INC	260 MOHAWK DRIVE, SUITE 264	34711
FMC CLERMONT DIALYSIS	312 MOHAWK ROAD	34715
CLERMONT CARDIOLOGY P.A.	200 E HIGHLAND AVENUE	34711
PROFESSIONAL PEDIATRICS, INC.	265 CITRUS TOWER BOULEVARD, SUITE 102	34711
FOCUS ORTHOPEDIC INC	841 OAKLEY SEVER DRIVE STE 1B	34711
SOUTH LAKE OB-GYN	1900 DON WICKHAM DR - SUITE 120	34711
VASCULAR SPECIALISTS OF CENTRAL FLORIDA	1920 DON WICKHAM DRIVE, SUITE 120	34711
EARLY AMBULATORY MEDICINE, LLC	740 LAKE AVENUE	34711
FLORIDA SPORTS INJURY - CLERMONT	255 CITRUS TOWER BOULEVARD	34711
TOTAL FAMILY HEALTHCARE	3115 CITRUS TOWER BLVD, SUITE A	34711
FAMILY PHYSICANS OF CLERMONT	1735 E STATE ROAD 50, SUITE B	34711
MID-FLORIDA UROLOGICAL ASSOC.	1804 OAKLEY SEAVER DRIVE, SUITE D	34711
SOUTH LAKE HOSPITAL SURGERY CENTER	1800 OAKLEY SEAVER DRIVE	34711
JSA MEDICAL GROUP - SOUTH LAKE ADULT PRIMARY CARE	1920 DON WICKHAM DRIVE, SUITE 300	34711
CLERMONT MEDICAL CENTER P.A.	1135 LAKE AVENUE	34711
VISTA CLINICAL DIAGNOSTICS	235 W STATE ROAD 50	34711
CLERMONT HEALTH AND REHABILITATION CENTER	151 E MINNEHAHA AVENUE	34711
AESTHETIC DERMATOLOGY P.A.	210 N HWY 27, SUITE 1	34711
KENNETH ESSIG M.D. P.A.	235 CITRUS TOWER BOULEVARD 102	34711
FLORIDA CARDIOLOGY P.A CLERMONT	255 CITRUS TOWER BOULEVARD, SUITE 101	34711
THE WOMEN'S CTR OF CLERMONT ADVISION OFWOMEN'S CTR	1715 E HWY 50, SUITE B	34711
GYNECOLOGICAL SPECIALTY CARE, LLC	1725 E HIGHWAY 50, SUITE B	34711
TOPPINO EYE CARE	1804 OAKLEY SEAVER DRIVE, SUITE B	34711
NEMOURS CHILDREN'S PRIMARY CARE	1371 CITRUS TOWER BOULEVARD	34711

Hospitals (Points)

Facility Name	Address	Zip Code
SOUTH LAKE HOSPITAL	1900 DON WICKHAM DR	34711

Law Enforcement Facilities (Points)

Facility Name	Address	Zip Code
CLERMONT POLICE DEPARTMENT (HQ)	865 WEST MONTROSE STREET	34711

Mobile Home Parks in Florida

Facility Name	Address	Zip Code
MINNEHAHA TRAILER PARK	660 HOOK ST	34711
EMERALD LAKES MOBILE VILLAGE	1401 W HWY 50	34711

Public and Private Schools (Points)

Facility Name	Address	Zip Code
CITRUS HEIGHTS ACADEMY	101 N GRAND HWY	34715
CYPRESS RIDGE ELEMENTARY SCHOOL	350 E AVE	34711
THE DREAM ACADEMY INC	2400 SOUTH HIGHWAY 27	34711
WINDY HILL MIDDLE SCHOOL	3575 HANCOCK RD	34711
IMAGINE SCHOOLS AT SOUTH LAKE	15220 HARTWOOD MARSH RD	34711
CLERMONT CHRISTIAN ACADEMY INC	100 N GRAND HWY	34711
REAL LIFE CHRISTIAN ACADEMY	1501 STEVE'S RD	34711
UNIVERSITY OF CENTRAL FLORIDA - SOUTH LAKE	1250 N HANCOCK RD	34711
CLERMONT KIDZ CARE	606 WEST AVE	34711
WESLEY CHRISTIAN ACADEMY	950 7TH STREET	34711
BELIEVERS CHRISTIAN ACADEMY	796 HOOK STREET	34711
FLORIDA AUTISM CENTER	17335 PAGONIA ROAD	34711
BLESSED SACRAMENT CATHOLIC SCHOOL	70 W SR 50	34711
LAND OF LAKES MONTESSORI SCHOOL	1650 OAKLEY SEAVER DR	34711
LAKE SUMTER STATE COLLEGE - SOUTH LAKE CAMPUS	1250 N HANCOCK ROAD	34711
CLERMONT ELEMENTARY SCHOOL	680 E HIGHLAND AVE	34711

Facility Name	Address	Zip Code
LOST LAKE ELEMENTARY SCHOOL	1901 JOHNS LAKE ROAD	34711
SOUTH LAKE MONTESSORI SCHOOL	983 W DESOTO STREET	34711
MAGIC MOMENTS LEARNING CENTER	885 W DESOTO ST	34711
CLERMONT MIDDLE SCHOOL	301 E AVE	34711
APPLIED BEHAVIOR EDU AND LIFESKILLS ACADEMY	355 CITRUS TOWER BLVD	34711
FAMILY CHRISTIAN CENTER SCHOOL - CLERMONT	2500 S HIGHWAY 27	34711
BETTER LIFE K4C CHRISTIAN ACADEMY	332 MOHAWK RD.	34715

Religious Centers (Points)

Facility Name	Address	Zip Code
EGLISE DE DIEU TABERNACLE DE LOUANGE	1040 SCHOOL ST	34711
CENTRO DE ADORACION UNA MEJOR VIDA	332 MOHAWK ROAD	34715
SOUTH LAKE PRESBYTERIAN CHURCH	131 CHESTNUT STREET	34711
FAMILY CHRISTIAN CENTER OF CLERMONT	2500 SOUTH US HIGHWAY 27	34714
ST MATTHIAS EPISCOPAL CHURCH	574 W MONTROSE STREET	34711
SOUTH LAKE CHURCH OF CHRIST	GRAND HWY	34711
CHURCH AT SOUTH LAKE INC	2500 HOOK ST	34711
RIVER CHURCH	813 HOOK STREET	34711
CHRISTIAN SCIENCE CHURCH	510 W MINNEOLA AVE	34711
WOOTSON TEMPLE CHURCH OF GOD	836 SCOTT STREET	34711
REAL LIFE CHRISTIAN CHURCH OF	1501 STEVES RD	34711
FAITH FELLOWSHIP CHURCH	915 W DESOTO STREET	34711
NEW LIFE PRESBYTERIAN CHURCH	100 EAST MINNEHAHA AVENUE	34711
OAK TREE BAPTIST CHURCH	644 E HIGHWAY 50	34711
NEW JACOBS CHAPEL MISSIONARY	410 W STATE ROAD 50	34711
CHURCH OF CHRIST	500 E GRAND HIGHWAY	34711
CHURCH OF GOD BY FAITH	910 BLOXAM AVENUE	34711
CLERMONT FIRST BAPTIST CHURCH	498 W MONTROSE ST	34711
IMMANUEL TEMPLE CHURCH OF OUR LORD JESUS CHRIST	709 EAST MONTROSE ST	34711
BLESSED SACRAMENT CATHOLIC	720 12TH STREET	34711
NOAH'S ARK	938 W BROOME STREET	34711
FIRST UNITED METHODIST CHURCH OF CLERMONT	950 7TH STREET	34711
SAINT MARK AFRICAN METHODIST EPISCOPAL CHURCH	810 DISSTON AVENUE	34711
CLERMONT CHURCH OF GOD	800 US HIGHWAY 27	34711
IMMANUEL TEMPLE CHURCH-OUR LORD	709 E MONTROSE STREET	34711
NEW BEGINNINGS OF LAKE COUNTY	792 EAST MONTROSE ST	34711
CITRUS HEIGHTS CHURCH OF THE NAZARENE	101 SOUTH GRAND HIGHWAY	34711
SOUTH ENGLISH CONGREGATION OF JEHOVAHS WITNESSES	2655 SUNBURST LN	34711

Social Services (Geocoded)

Facility Name	Address	Zip Code
ANGELS OF MERCY	1330 MILLHOLLAND DRIVE	34711

US Census Places

Facility Name	
Minneola	
Clermont	
Groveland	

Veteran Organizations and Facilities (Points)

Facility Name	Address	Zip Code
VFW POST 5277 - WILLIAM A. SUGGS MEMORIAL	855 W DESOTO STREET	34711
MARINE CORPS LEAGUE DETACHMENT 1120	1063 W. DESOTO ST.	34711
AMERICAN LEGION POST 55	1063 W DESOTO STREET	34711
VETERANS AFFAIRS VET CENTER CLERMONT	1655 EAST HIGHWAY 50	34711

Sociocultural Data Report

Four Corners

Area:	50.116 square miles
Jurisdiction(s):	Cities: NA Counties:Polk, Orange, Osceola, Lake

General Population Trends

General Population Trends				
Description	1990	2000	2010 (ACS)	2016(ACS)
Total Population	1,306	5,073	18,808	23,648
Total Households	402	1,903	7,017	8,142
Average Persons per Acre	0.09	0.24	1.12	1.37
Average Persons per Household	3.06	2.57	2.86	2.91
Average Persons per Family	2.96	2.96	2.93	3.42
Males	687	2,597	9,186	11,793
Females	619	2,476	9,622	11,854

Description	1990	2000	2010 (ACS)	2016(ACS)
White Alone	1,250	4,355	14,397	19,251
	(95.71%)	(85.85%)	(76.55%)	(81.41%)
Black or African	31	239	1,472	2,004
American Alone	(2.37%)	(4.71%)	(7.83%)	(8.47%)
Native Hawaiian and Other Pacific Islander Alone	0 (0.00%)	1 (0.02%)	21 (0.11%)	12 (0.05%)
Asian Alone	10	109	479	613
	(0.77%)	(2.15%)	(2.55%)	(2.59%)
American Indian or Alaska Native Alone	6 (0.46%)	24 (0.47%)	100 (0.53%)	44 (0.19%)
Some Other Race	9	212	1,682	1,001
Alone	(0.69%)	(4.18%)	(8.94%)	(4.23%)
Claimed 2 or More	NA	133	657	722
Races	(NA)	(2.62%)	(3.49%)	(3.05%)
Hispanic or Latino	67	618	5,568	7,720
of Any Race	(5.13%)	(12.18%)	(29.60%)	(32.65%)
Not Hispanic or	1,239	4,455	13,240	15,928
Latino	(94.87%)	(87.82%)	(70.40%)	(67.35%)
Minority	114	1,068	7,755	10,840
	(8.73%)	(21.05%)	(41.23%)	(45.84%)

	-
	nde
AUC II	FILUS

Description	1990	2000	2010 (ACS)	2016(ACS)	1
Under Age 5	6.43%	6.13%	6.73%	5.83%	
Ages 5-17	14.62%	15.67%	17.02%	16.34%	
Ages 18-21	4.98%	3.41%	4.40%	4.35%	
Ages 22-29	12.71%	9.23%	11.57%	14.61%	
Ages 30-39	17.00%	16.50%	15.29%	14.58%	
Ages 40-49	13.48%	14.98%	14.00%	14.13%	
Ages 50-64	17.38%	19.93%	18.01%	17.24%	
Age 65 and Over	13.48%	14.15%	12.97%	12.92%	
-Ages 65-74	10.41%	10.13%	8.48%	8.26%	
-Ages 75-84	2.60%	3.51%	3.76%	3.81%	
-Age 85 and Over	0.46%	0.49%	0.73%	0.84%	
Median Age	NA	40	36	38	

Median Age Comparison

Disability Trends

See the Data Sources section below for an explanation about the differences in disability data among the various vears

Description	1990	2000	2010 (ACS)	2016(ACS)
Population 16 To 64 Years with a disability	114 (11.28%)	751 (16.04%)	(NA)	(NA)
Population 20 To 64 Years with a disability	(NA)	(NA)	(NA)	1305 (8.84%)

Educational Attainment Trends

Description	1990	2000	2010 (ACS)	2016(ACS)	8,
Less than 9th	50	101	260	547	7,
Grade	(5.71%)	(2.77%)	(2.21%)	(3.41%)	6,
9th to 12th Grade,	115	353	641	762	5,
No Diploma	(13.13%)	(9.68%)	(5.45%)	(4.75%)	
High School	711	3,192	10,856	14,747	4,
Graduate or Higher	(81.16%)	(87.52%)	(92.34%)	(91.85%)	
Bachelor's Degree	166	759	2,869	4,376	3,
or Higher	(18.95%)	(20.81%)	(24.40%)	(27.26%)	2.

Language Trends

Housing Trends

Age 5 and Over					
Description	1990	2000	2010 (ACS)	2016(ACS)	
Speaks English	36	163	1,096	1,174	-
Well	(2.84%)	(3.42%)	(6.81%)	(5.27%)	
Speaks English Not	NA	68	378	743	-
Well	(NA)	(1.43%)	(2.35%)	(3.34%)	
Speaks English Not at All	NA (NA)	36 (0.76%)	115 (0.71%)	357 (1.60%)	-
Speaks English Not	22	104	493	1,100	-
Well or Not at All	(1.74%)	(2.18%)	(3.06%)	(4.94%)	

225,000 200,000 175,000 150,000 100,000 75,000 25,000

Median Housing Value Comparison

Description 2000 2016(ACS) 1990 2010 (ACS) Total 1,182 3,590 20,804 22,149 Units per Acre 0.06 0.13 0.82 0.88 221 9,088 Single-Family Units 3,070 11,363 **Multi-Family Units** 171 4,128 8,773 4 327 1,608 1,992 Mobile Home Units 174 4,579 Owner-Occupied 334 1,599 4,383 Units 3,564 **Renter-Occupied** 68 304 2,634 Units 14,006 Vacant Units 781 1,687 13,787 Median Housing \$89,800 \$87,200 \$198,400 \$150,700 Value Occupied Housing Units w/No Vehicle 222 (3.16%) 17 47 172 (4.24%) (2.47%) (2.11%) 2.00

Occupied Units With No Vehicles Available

2010 (ACS)

2016(ACS)

2000

0

1990

Existing Land Use		
Land Use Type	Acres	Percentage
Acreage Not Zoned For Agriculture	614	1.91%
Agricultural	568	1.77%
Centrally Assessed	0	0.00%
Industrial	10	0.03%
Institutional	5	0.02%
Mining	280	0.87%
Other	620	1.93%
Public/Semi-Public	88	0.27%
Recreation	1,740	5.42%
Residential	737	2.30%
Retail/Office	402	1.25%
Row	4	0.01%
Vacant Residential	104	0.32%
Vacant Nonresidential	995	3.10%
Water	35	0.11%
Parcels With No Values	<0.5	<0.00%

Location Maps

Community Facilities

The community facilities information below is useful in a variety of ways for environmental evaluations. These community resources should be evaluated for potential sociocultural effects, such as accessibility and relocation potential. The facility types may indicate the types of population groups present in the project study area. Facility staff and leaders can be sources of community information such as who uses the facility and how it is used. Additionally, community facilities are potential public meeting venues.

Assisted Housing (Points)

Facility Name	Address	Zin Code
TIERRA VISTA	8700 TIERRA VISTA CIRCI E	34747
RAINTREE	1305 RAINTREE BEND	34711
Community Centers (Points)		
Facility Name	Address	Zip Code
KNIGHTS OF COLUMBUS 14217 - SAINT FAUSTINA	9310 US HWY 192	34714
Cultural Contors (Points)		
Facility Name	Address	Zin Code
CAGAN CROSSINGS COMMUNITY LIBRARY	16729 CAGAN OAKS	34714
		1
Fire Stations (Points)		
Facility Name	Address	Zip Code
OSCEOLA COUNTY FIRE DEPARTMENT STATION (REUNION 2) (PROPOSED)		34747
OSCEOLA COUNTY FIRE DEPARTMENT STATION 71 (FOUR CORNERS)	8706 W IRLO BRONSON MEMORIAL HWY	34747
OSCEOLA COUNTY FIRE DEPARTMENT STATION (CHAMPIONS GATE) (PROPOSED)		33896
OSCEOLA COUNTY FIRE DEPARTMENT STATION (LAKE WILSON) (PROPOSED)		34747
LAKE COUNTY FIRE DEPARTMENT AND RESCUE STATION 112 (CLERMONT)	16240 COUNTY ROAD 474	34714
OSCEOLA COUNTY FIRE DEPARTMENT STATION (STONEYBROOK SOUTH) (PROPOSED)		33896
OSCEOLA COUNTY FIRE DEPARTMENT STATION 73 (DAVENPORT/REUNION)	7855 OSCEOLA POLK LINE RD	34747
POLK COUNTY FIRE DEPARTMENT AND RESCUE STATION 210 (NORTHRIDGE)	6525 RONALD REGAN PKWY	33896
Florida Parks and Recreational Facilities	(Points)	7. 0. 1.
NORTHEAST REGIONAL PARK & BOAT RAMP	50901 HWY 27	33897
Government Building		
Facility Name	Address	Zip Code
FLORIDA DEPARTMENT OF HIGHWAY SAFETY AND MOTOR VEHICLES SERVICE CENTER	2400 S US HWY 27	34711
U S POST OFFICE - SOUTH CLERMONT	1100 US HWY 27	34714
Healthcare Facilities (Geocoded)		
Facility Name	Address	Zip Code
DAVENPORT DIALYSIS CENTER	45597 US 27 HIGHWAY	33897
EXCEL PEDIATRICS - CLERMONT	265 CITRUS BOULEVARD 102	34711
DAVENPORT PEDIATRICS CLERMONT PA	1528 SUNRISE PLAZA DRIVE, SUITE 1	34714
EYE SPECIALISTS OF MID-FLORIDA, P.A.	1050 US HWY 27 N STE 1	34711
CITRUS FAMILY MEDICAL CENTER LLC LEGENDS FAMILY ME	1485 LEGENDS BOULEVARD	33896

Law Enforcement Facilities (Points)

Facility Name	Address	Zip Code
POLK COUNTY SHERIFF'S OFFICE - NE DISTRICT	1100 DUNSON RD	33896

Mobile Home Parks in Florida

Facility Name	Address	Zip Code
MOUSE MOUNTAIN MOBILE HOME PARK	7500 OSCEOLA POLK LINE ROAD	33837
THE RIDGE	49473 HWY 27	33897
VISTA DEL LAGO	14465 VISTA DEL LAGO BLVD	34787
POLO PARK EAST	525 POLO PARK EAST BLVD	33897

Public and Private Schools (Points)

Facility Name	Address	Zip Code
RIDGEVIEW GLOBAL STUDIES ACADEMY	1000 DUNSON ROAD	33896
CITRUS RIDGE A CIVICS ACADEMY	1775 SAND MINE RD	33897
FOUR CORNERS CHARTER MIDDLE SCHOOL	9160 BELLA CITTA BLVD	33896
WESTSIDE K-8 SCHOOL	2551 WESTSIDE BLVD	34746
SAWGRASS BAY ELEMENTARY SCHOOL	16325 SUPERIOR BLVD	34714
FOUR CORNERS CHARTER HIGH SCHOOL	9160 BELLA CITTA BLVD	33896
FOUR CORNERS CHARTER SCHOOL	9100 TEACHER LN	34747

Religious Centers (Points)

Facility Name	Address	Zip Code
COMMUNITY OF FAITH UNITED METHODIST CHURCH	9120 TEACHER LN	33897
GREATER WORKS MINISTRIES INTL	15441 BAY VISTA DRIVE	34714
COMMUNITY OF FAITH	9110 US HIGHWAY 192 # B	34714
OAK HILL BAPTIST CHURCH	8060 OSCEOLA POLK LINE ROAD	33896
CHURCH OF JESUS CHRIST L D S	1001 DUNSON ROAD	33896
CHAPEL BAPTIST CHURCH - OPEN DOOR BAPTIST CHURCH	15744 COUNTY ROAD 474	34714

US Census Places

Facility Name Horizon West

Four Corners

Sociocultural Data Report

Horizon West

Area:	38.083 square miles
Jurisdiction(s):	Cities: Bay Lake, Winter Garden Counties:Orange

General Population Trends

Description	1990	2000	2010 (ACS)	2016(ACS)
Total Population	1,649	2,510	13,724	21,942
Total Households	496	989	5,113	7,299
Average Persons per Acre	0.32	0.58	1.52	1.86
Average Persons per Household	3.09	2.79	2.89	3.03
Average Persons per Family	3.22	3.15	3.00	3.55
Males	851	1,226	6,717	10,668
Females	798	1,284	7,007	11,274

Description	1990	2000	2010 (ACS)	2016(ACS)
White Alone	1,603	2,216	10,878	16,736
	(97.21%)	(88.29%)	(79.26%)	(76.27%)
Black or African	8	34	863	1,690
American Alone	(0.49%)	(1.35%)	(6.29%)	(7.70%)
Native Hawaiian and Other Pacific Islander Alone	2 (0.12%)	3 (0.12%)	26 (0.19%)	0 (0.00%)
Asian Alone	6	62	974	1,590
	(0.36%)	(2.47%)	(7.10%)	(7.25%)
American Indian or Alaska Native Alone	4 (0.24%)	5 (0.20%)	44 (0.32%)	15 (0.07%)
Some Other Race	27	121	508	1,544
Alone	(1.64%)	(4.82%)	(3.70%)	(7.04%)
Claimed 2 or More	NA	70	429	368
Races	(NA)	(2.79%)	(3.13%)	(1.68%)
Hispanic or Latino	82	283	2,594	4,112
of Any Race	(4.97%)	(11.27%)	(18.90%)	(18.74%)
Not Hispanic or	1,567	2,227	11,130	17,830
Latino	(95.03%)	(88.73%)	(81.10%)	(81.26%)
Minority	101	447	4,748	7,723
	(6.12%)	(17.81%)	(34.60%)	(35.20%)

34.6

Orange

35.2

2016(ACS)

6.12

40

30 20 10

0

AUG HEIIUS	

Description	1990	2000	2010 (ACS)	2016(ACS)	10
Under Age 5	6.73%	3.23%	8.04%	8.82%	ç
Ages 5-17	16.62%	19.44%	17.30%	20.11%	8
Ages 18-21	4.12%	5.42%	3.56%	3.79%	7
Ages 22-29	9.22%	8.57%	13.26%	11.43%	e
Ages 30-39	16.49%	13.43%	19.81%	21.14%	5
Ages 40-49	14.37%	19.04%	15.74%	14.81%	2
Ages 50-64	20.44%	19.48%	14.73%	12.41%	-
Age 65 and Over	12.01%	11.43%	7.56%	7.50%	2
-Ages 65-74	9.40%	8.45%	5.03%	5.25%	1
-Ages 75-84	2.30%	2.75%	2.04%	1.83%	1
-Age 85 and Over	0.36%	0.24%	0.50%	0.41%	
Median Age	NA	39	34	34	

Income Trends 35 2010 2016(ACS) Description 1990 2000 (ACS) 30 Median Household \$42,196 \$49,779 \$71,722 \$77,746 Income 25 Median Family \$43,288 \$56,875 \$80,988 NA 20 Income Population below 8.31% 6.89% 3.96% 7.90% 15 Poverty Level Households below Poverty Level 3.83% 6.17% 3.87% 7.62% 10 5 Households with 3.23% 1.11% 1.58% 1.29% Public Assistance 0 Income

Disability Trends

See the Data Sources section below for an explanation about the differences in disability data among the various years

Description	1990	2000	2010 (ACS)	2016(ACS)
Population 16 To 64 Years with a disability	78 (6.38%)	412 (16.96%)	(NA)	(NA)
Population 20 To 64 Years with a disability	(NA)	(NA)	(NA)	677 (4.98%)

Educational Attainment Trends

Description	1990	2000	2010 (ACS)	2016(ACS)	7
Less than 9th	77	54	174	228	6
Grade	(7.06%)	(3.11%)	(2.42%)	(1.63%)	
9th to 12th Grade,	85	211	176	374	5
No Diploma	(7.79%)	(12.16%)	(2.44%)	(2.67%)	
High School	929	1,470	6,854	13,396	4
Graduate or Higher	(85.15%)	(84.73%)	(95.14%)	(95.70%)	
Bachelor's Degree or Higher	278 (25.48%)	343 (19.77%)	3,093 (42.93%)	7,559 (54.00%)	2

Language Trends

Age 5 and Over				
Description	1990	2000	2010 (ACS)	2016(ACS)
Speaks English	20	63	527	1,055
Well	(1.32%)	(2.59%)	(5.47%)	(5.27%)
Speaks English Not	NA	69	292	545
Well	(NA)	(2.84%)	(3.03%)	(2.72%)
Speaks English Not at All	NA	4	51	112
	(NA)	(0.16%)	(0.53%)	(0.56%)
Speaks English Not	42	73	343	657
Well or Not at All	(2.77%)	(3.01%)	(3.56%)	(3.28%)

Median Housing Value Comparison

Occupied Units With No Vehicles Available

Existing Land Use		
Land Use Type	Acres	Percentage
Acreage Not Zoned For Agriculture	1,401	5.75%
Agricultural	7,674	31.49%
Centrally Assessed	0	0.00%
Industrial	153	0.63%
Institutional	65	0.27%
Mining	0	0.00%
Other	4,221	17.32%
Public/Semi-Public	1,353	5.55%
Recreation	159	0.65%
Residential	2,157	8.85%
Retail/Office	44	0.18%
Row	17	0.07%
Vacant Residential	4,828	19.81%
Vacant Nonresidential	72	0.30%
Water	616	2.53%
Parcels With No Values	162	0.66%

Location Maps

Community Facilities

The community facilities information below is useful in a variety of ways for environmental evaluations. These community resources should be evaluated for potential sociocultural effects, such as accessibility and relocation potential. The facility types may indicate the types of population groups present in the project study area. Facility staff and leaders can be sources of community information such as who uses the facility and how it is used. Additionally, community facilities are potential public meeting venues.

Assisted Housing (Points)

Facility Name	Address	Zip Code
BUENA VISTA PLACE II	8825 BUENA PLACE	34786
BUENA VISTA PLACE	8825 BUENA PLACE	34786

Florida Parks and Recreational Facilities (Points)

Facility Name	Address	Zip Code
ORANGE COUNTY NATIONAL GOLF CENTER: CROOKED CAT/TOOTH COURSES	16100 PHIL RITSON WAY	34787
INDEPENDENCE PARK	5849 NEW INDEPENDENCE PKWY	34787
ORANGE COUNTY NATIONAL GOLF CENTER: PANTHER LAKE COURSE	16100 PHIL RITSON WAY	34787
SUMMERPORT NEIGHBORHOOD PARK	14491 BRIDGEWATER CROSSINGS BLVD	34786
INDEPENDENCE COMMUNITY BOAT RAMP	14914 OLD THICKET TRCE	34787
BLUEBIRD PARK ROAD PASSIVE PARK	14544 BLUEBIRD PARK RD	34786

Healthcare Facilities (Geocoded)

Facility Name	Address	Zip Code
SUMMERPORT FAMILY MEDICINE	13528 SUMMERPORT VILLAGE PARKWAY	34786
WINDERMERE DERMATOLOGY & AESTHETICS	7798 WINTER GARDEN VINELAND ROAD, SUITE 100	34786
WINDERMERE MEDICAL CENTER	11600 LAKESIDE VILLAGE LANE	34786

. . .

Public and Private Schools (Points)

Facility Name	Address	Zip Code
STARCHILD ACADEMY WINDERMERE	11815 SILVERLAKE PARK DR.	34786
CENTRAL FLORIDA PREPARATORY SCHOOL OCN	16301 PHIL RITSON WAY	34787
HORIZON WEST/LAKESIDE VILLAGE SOUTH ELEMENTARY SCHOOL (SITE 25-E-SW-4)	TABORFIELD AVE	32836
BRIDGEWATER RELIEF MIDDLE (SITE 37-M-SW-4)	WINTER GARDEN VINELAND RD	34786
BRIDGEWATER MIDDLE	5660 TINY RD	34787
INDEPENDENCE ELEMENTARY	6255 NEW INDEPENDENCE PKWY	34787
BAY LAKE ELEMENTARY	120005 SILVER LAKE PARK DR	34786
NEW HORIZON WEST ACADEMY	6121 AVALON ROAD	34787
KEENES CROSSING ELEMENTARY	5240 KEENES PHEASANT DR	34786

Religious Centers (Points)

Facility Name	Address	Zip Code
HORIZON WEST COMMUNITY CHURCH IGLESIA DE LA COMUNIDAD	6121 AVALON RD	34787
CHURCH OF JESUS CHRIST OF LATTER-DAY SAINTS	13749 REAMS RD	34786
FIRST BAPTIST CHURCH	11551 STATE ROAD 535	32836

Social Services (Geocoded)

Facility Name	Address	Zip Code
CHRISTIAN FAMILY SERVICES	6213 RIVER FRUIT CT	34786

US Census Places

Facility Name	
Winter Garden	
Horizon West	
Lake Butler	

Sociocultural Data Report

Winter Garden

Males

Females

willer Galuer					
Area:	15.61 square	e miles			
Jurisdiction(s): Cities: Winter Garden, Oakland, Ocoee Counties:Orange					
General Popul	ation Tre	nds			
Description	1990	2000	2010 (ACS)	2016(ACS)	
Total Population	11,764	15,449	31,247	35,217	
Total Households	4,130	5,628	10,780	11,689	
Average Persons per Acre	2.40	2.89	4.24	4.87	
Average Persons per Household	2.81	2.79	3.08	2.94	
Average Persons per Family	3.27	3.28	3.15	3.59	

7,406

8,043

i.

15,184

16,063

16,591

18,625

5,653

6,111

Minority Percentage Population 90 91.4 80 70 60 50 Community Orange 40 30 20 10 0 1990 2000 2010 (ACS) 2016(ACS)

Race and Ethnicity Trends

Description	1990	2000	2010 (ACS)	2016(ACS)
White Alone	9,446	11,726	21,609	20,923
	(80.30%)	(75.90%)	(69.16%)	(59.41%)
Black or African	1,859	2,298	5,075	5,612
American Alone	(15.80%)	(14.87%)	(16.24%)	(15.94%)
Native Hawaiian and Other Pacific Islander Alone	4 (0.03%)	8 (0.05%)	35 (0.11%)	111 (0.32%)
Asian Alone	67	101	1,474	2,051
	(0.57%)	(0.65%)	(4.72%)	(5.82%)
American Indian or Alaska Native Alone	33 (0.28%)	31 (0.20%)	115 (0.37%)	60 (0.17%)
Some Other Race	355	903	1,921	4,546
Alone	(3.02%)	(5.85%)	(6.15%)	(12.91%)
Claimed 2 or More	NA	382	1,018	1,913
Races	(NA)	(2.47%)	(3.26%)	(5.43%)
Hispanic or Latino	928	2,497	6,759	9,376
of Any Race	(7.89%)	(16.16%)	(21.63%)	(26.62%)
Not Hispanic or	10,836	12,952	24,488	25,841
Latino	(92.11%)	(83.84%)	(78.37%)	(73.38%)
Minority	2,861	5,105	14,041	18,564
	(24.32%)	(33.04%)	(44.94%)	(52.71%)

-	
	Tronde
Aue	THEILUS
Age	1101100

Description	1990	2000	2010 (ACS)	2016(ACS)	1
Under Age 5	7.97%	7.84%	7.49%	6.75%	
Ages 5-17	17.89%	19.21%	20.02%	20.83%	
Ages 18-21	5.16%	3.48%	4.79%	4.16%	
Ages 22-29	12.56%	10.69%	9.80%	9.79%	
Ages 30-39	15.21%	17.43%	14.88%	15.49%	
Ages 40-49	11.44%	14.29%	16.02%	15.26%	
Ages 50-64	13.92%	13.34%	16.60%	17.45%	
Age 65 and Over	15.84%	13.72%	10.39%	10.25%	
-Ages 65-74	8.30%	6.98%	5.53%	6.06%	
-Ages 75-84	5.56%	5.03%	3.34%	3.10%	
-Age 85 and Over	1.99%	1.70%	1.52%	1.08%	
Median Age	NA	35	35	36	

Income Trends 35 Description 2000 2010 1990 2016(ACS) 30 (ACS) Median Household \$25,068 \$37,337 \$48,355 \$51,039 25 Income Median Family \$28,646 \$40,221 \$58,884 NA 20 Income 15 Population below 11.38% 11.55% 8.23% 10.79% Poverty Level 10 10.29% 7.76% 11.18% Households below 11.16% Poverty Level 5 Households with 7.99% 2.24% 1.08% 2.08% Public Assistance 0 Income

Disability Trends

See the Data Sources section below for an explanation about the differences in disability data among the various years

Description	1990	2000	2010 (ACS)	2016(ACS)
Population 16 To 64 Years with a disability	699 (7.89%)	2096 (15.04%)	(NA)	(NA)
Population 20 To 64 Years with a disability	(NA)	(NA)	(NA)	1592 (7.48%)

Educational Attainment Trends

Age 25 and Over Description	1990	2000	2010 (ACS)	2016(ACS)	12 11
Less than 9th	1,290	920	1,169	1,353	9
Grade	(16.65%)	(9.14%)	(6.21%)	(5.95%)	
9th to 12th Grade,	1,459	1,533	1,185	1,436	8
No Diploma	(18.83%)	(15.22%)	(6.29%)	(6.31%)	7
High School	5,001	7,617	16,481	19,951	6
Graduate or Higher	(64.54%)	(75.65%)	(87.50%)	(87.74%)	5
Bachelor's Degree	1,124	1,980	5,990	7,925	4
or Higher	(14.51%)	(19.66%)	(31.80%)	(34.85%)	3

Language Trends

Housing Trends

Description

Single-Family Units

Multi-Family Units

Mobile Home Units

Owner-Occupied

Renter-Occupied

Median Housing

Occupied Housing Units w/No Vehicle

Vacant Units

Units per Acre

Total

Units

Units

Value

Age 5 and Over Description	1990	2000	2010 (ACS)	2016(ACS)	
Speaks English	214	456	1,596	1,887	
Well	(1.95%)	(3.20%)	(5.94%)	(5.75%)	
Speaks English Not	NA	472	1,315	1,364	
Well	(NA)	(3.32%)	(4.90%)	(4.15%)	
Speaks English Not at All	NA (NA)	294 (2.06%)	504 (1.88%)	944 (2.87%)	
Speaks English Not	217	766	1,819	2,308	
Well or Not at All	(1.98%)	(5.38%)	(6.78%)	(7.03%)	

2000

6,079

0.80

4,236

1,243

3,868

1,760

451

471 (8.37%)

\$103,400

599

2010 (ACS)

11,973

1.46

9,273

1,537

7,673

3,107

1,193

\$253,750

529 (4.91%)

800

1990

4,555

0.56

2,898

871

328

2,523

1,607

425

380

\$79,000

(9.20%)

2016(ACS)

12,672

1.55

9,985

2,098

7,835

3,853

984

597

\$189,950

(5.11%)

589

Median Housing Value Comparison 250,000 225,000 200,000 175,000 150,000 Community 125,000 Orange 100,000 75,000 50,000 25,000 0 1990 2000 2010 (ACS) 2016(ACS)

Existing Land Use

Land Use Type	Acres	Percentage
Acreage Not Zoned For Agriculture	68	0.68%
Agricultural	877	8.78%
Centrally Assessed	5	0.05%
Industrial	294	2.94%
Institutional	211	2.11%
Mining	0	0.00%
Other	873	8.74%
Public/Semi-Public	265	2.65%
Recreation	174	1.74%
Residential	2,764	27.67%
Retail/Office	679	6.80%
Row	7	0.07%
Vacant Residential	2,223	22.25%
Vacant Nonresidential	385	3.85%
Water	5	0.05%
Parcels With No Values	99	0.99%

Location Maps

Community Facilities

The community facilities information below is useful in a variety of ways for environmental evaluations. These community resources should be evaluated for potential sociocultural effects, such as accessibility and relocation potential. The facility types may indicate the types of population groups present in the project study area. Facility staff and leaders can be sources of community information such as who uses the facility and how it is used. Additionally, community facilities are potential public meeting venues.

Assisted Housing (Points)

Facility Name	Address	Zip Code
WEST POINTE VILLAS	1201 WEST POINTE VILLAS BLVD.	34787
EVERGREEN GARDEN APARTMENTS	678 W BAY STREET	32787
OSPREY LANDING APARTMENTS	584 WEST BAY ST	32787
COUNTRY GARDEN	15122 WEST COLONIAL DRIVE	347876017
OSPREY LANDING APARTMENTS II	584 WEST BAY ST	32787
BAY POINTE APTS	1053 HORIZON STREET	34787
PARK AVENUE VILLAS	48 SOUTH PARK AVENUE	34787

Community Centers (Points)

Facility Name	Address	Zip Code
YMCA - ROPER FAMILY CENTER	100 WINDERMERE RD	34787
JESSIE BROCK COMMUNITY CENTER	310 N DILLARD ST	34787
LIONS CLUB - WINTER GARDEN	39 ORANGE TREE CIR	34787
AMERICAN LEGION POST 63	271 W PLANT ST	34787
CHAMBER OF COMMERCE - WEST ORANGE	12184 W COLONIAL DR	34787
ELKS LODGE 2165	700 9TH ST	34787
KNIGHTS OF COLUMBUS 11189 - RESURRECTION	1211 S VINELAND RD	34787
MASONIC LODGE - WINTER GARDEN 165 F & AM	230 W BAY ST	34787
BOYS & GIRLS CLUB - WEST ORANGE BRANCH	303 W CROWN POINT RD	34787

Cultural Centers (Points)

Facility Name	Address	Zip Code
WINTER GARDEN LIBRARY	805 E PLANT ST	34787
CENTRAL FLORIDA RAILROAD MUSEUM	101 S BOYD ST	34787
GARDEN THEATRE	160 W PLANT ST	34787

Fire Stations (Points)

Facility Name	Address	Zip Code
WINTER GARDEN FIRE DEPARTMENT STATION 22	13521 FOXCREST BLVD	34787
WINTER GARDEN FIRE DEPARTMENT STATION 23	1029 FULLERS CROSS RD	34787
WINTER GARDEN FIRE DEPARTMENT STATION 24	131 E PALMETTO ST	34787

Florida Parks and Recreational Facilities (Points)

Facility Name	Address	Zip Code
NEWTON PARK & BOAT RAMP	29 W GARDEN AVE	34787
WEST ORANGE TRAIL-WINTER GARDEN STATION	455 E PLANT ST	32808
VETERANS MEMORIAL PARK	420 S PARK AVE	34787
ZANDERS PARK AND BOULER POOL	362 11TH ST	34787
DOWNTOWN SPLASHPAD AND PAVILION	104 S LAKEVIEW AVE	34787
MAPLE STREET PARK	135 FLORIDA AVE	34787
WEST ORANGE DOG PARK	12400 MARSHALL FARMS RD	34787
WEST ORANGE PARK	150 WINDERMERE RD	34787
NEWTON PARK AND FARNSWORTH POOL	31 W GARDEN AVE	34787
JESSIE BROCK COMMUNITY CENTER PARK	1723 BRUTON BLVD	32805
WINTER GARDEN BALL FIELDS	415 S PARK AVE	34787
COVINGTON PARK	620 MEADOW GLADE DR	34787
OLD FIRE STATION RECREATION CENTER	127 S BOYD ST	34787

Facility Name	Address	Zip Code
WALKER FOOTBALL FIELD AND SAM WILLIAMS LITTLE LEAGUE COMPLEX	415 S PARK AVE	34787
DOCTOR BRADFORD MEMORIAL PARK	220 W DIVISION ST	34787
BRADDOCK PARK	13460 LAKE BUTLER BLVD	34786
WEST ORANGE TRAIL-CHAPIN STATION	501 W CROWN POINT CROSS RD	34787

Government Building

Facility Name	Address	Zip Code
U S POST OFFICE - WINTER GARDEN	15155 W COLONIAL DR	34787
U S POST OFFICE - DOWNTOWN WINTER GARDEN	207 W PLANT ST	34787
ORANGE COUNTY HEALTH DEPARTMENT - WINTER GARDEN HEALTH CENTER	1210 E PLANT ST	34787
ORANGE COUNTY TAX COLLECTOR - WEST ORANGE TAG AGENCY	14035 W COLONIAL DR	34787
CITY OF WINTER GARDEN CITY HALL	300 W PLANT ST	34787

Healthcare Facilities (Geocoded)

Facility Name	Address	Zip Code
PHYSICIAN ASSOCIATES LLC	3724 WINTER GARDEN VINELAND ROAD	34787
LOCH HAVEN OB/GYN	15502 STONEYBROOK PARKWAY, SUITE 112	34787
CENTRAL FLORIDA KIDNEY CTRS INC WG	741 S DILLARD STREET	34787
CENTER FOR PEDIATRICS ADOLESCENT MEDICINE	15502 STONEYBROOK PARKWAY, SUITE 2-108	34787
QUALITY HEALTH CARE CENTER	12751 W COLONIAL DRIVE	34787
CAPPLEMAN, EDWARDS, CASTELLO MD PA	436 N DILLARD STREET	34787
COLONIAL LAKES HEALTH CARE	15204 W COLONIAL DRIVE	34787
NIGHT LITE PEDIATRICS	13750 W COLONIAL DRIVE 250	34787
PAIN CARE MANAGEMENT OF ORLANDO DBA PAIN CARE FIRS	13650 W COLONIAL DRIVE, SUITE 100	34787
ADVANCED PEDIATRICS	3712 WINTER GARDEN VINELAND ROAD	34787
WINTER GARDEN URGENT CARE LLC	736 S DILLARD STREET	34787
HEALTH CENTRAL PARK	411 N DILLARD STREET	34787
WENCZAK, BARBARA A MD	12200 W COLONIAL DRIVE, SUITE 102	34787
OCHD/WINTER GARDEN CLINIC	1210 E PLANT STREET, SUITE 300	34787
KID MD PEDIATRICS LLC	13848 TILDEN ROAD, SUITE 230	34787
WINTER GARDEN DIALYSIS	1222 WINTER GARDEN VINELAND RD	34787
FLORIDA HOSPITAL MEDICAL GROUP FAMILY MEDICINE AT	3131 DANIELS ROAD, SUITE 106	34787
KHOUZAM, NAGUI N MD PA	54 E PLANT STREET	34787
ALL ABOUT KIDS PEDIATRICS	4020 WINTER GARDEN VINELAND ROAD	34787
WINTER GARDEN FAMILY HEALTH	13275 W COLONIAL DRIVE	34787

Law Enforcement Facilities (Points)

Facility Name	Address	Zip Code
WINTER GARDEN POLICE DEPARTMENT	251 W PLANT ST	34787

Mobile Home Parks in Florida

Facility Name	Address	Zip Code
WESTWOOD VILLAGE	850 SWALLOWTAIL DR	34787
HYDE PARK	14253 WEST COLONIAL DRIVE	34787
TRAILER CITY MHP	21 EAST CREST AVENUE	34787
ORANGE TREE MHP	S PARK AVE	34787

Public and Private Schools (Points)

Facility Name	Address	Zip Code
PASTORA BEULA ACADEMY	13 E. CYPRESS STREET	34787
BRIGHT HORIZONS AT WINTER GARDEN	1660 DANIELS ROAD	34787
WHISPERING OAK ELEMENTARY	15300 STONEYBROOK WEST PY	34787
LAKEVIEW MIDDLE	1200 W BAY ST	34787
HOPE CHARTER	1550 EAST CROWN POINT RD	34787
STONEYBROOK ACADEMY	15493 STONEYBROOK WEST PARKWAY	34787

Facility Name	Address	Zip Code
MORNINGSIDE STEM ACADEMY	818 GRANDE REGAL POINTE	34787
THE KING'S ACADEMY	1302 EDGEWAY DRIVE	34787
SUNRIDGE ELEMENTARY	14455 SUNRIDGE BLVD	34787
DILLARD STREET ELEMENTARY	310 N DILLARD ST	34787
ST LILLIE V HIGH SCHOOL	1165 E PLANT ST STE 7	34787
CHILDRENS LIGHTHOUSE LEARNING CENTER	220 WINDERMERE RD	34787
UCP WEST ORANGE CHARTER	1297 WINTER GARDEN-VINELAND RD	34787
VISION EDUCATIONAL LEARNING CENTER	115 9TH ST	34787
LEGACY HIGH CHARTER	1550 EAST CROWN POINT RD	34787
WEST ORANGE MONTESSORI SCHOOL	227 S MAIN ST	34787
BETHLEHEM'S CHRISTIAN ACADEMY	55 CENTER ST	34787
COMMUNITY CHRISTIAN LEARNING CENTER, CORP - WINTER GARDEN	305 BEULAH RD	34787
FOUNDATION ACADEMY	15304 TILDEN RD	34787
CRANIUM ACADEMY	4068 WINTER GARDEN VINELAND RD	34787
FOUNDATION ACADEMY	125 E PLANT ST	34787
MONTESSORI OF WINTER GARDEN CHARTER	856 E PLANT ST	34787
SUNRIDGE MIDDLE	14956 SUNRIDGE BLVD	34787
STARCHILD ACADEMY WINTER GARDEN	1324 WINTER GARDEN VINELAND RD	34787
RESURRECTION PRESCHOOL	1211 WINTER GARDEN VINELAND RD	34787
MESSIAH ACADEMY	241 N. MAIN STREET	34787
APPLIED BEHAVIOR CENTER FOR AUTISM	1450 DANIELS ROAD	34787
CALVARY CHRISTIAN SCHOOL	631 SOUTH DILLARD STREET	34787
MONTESSORI ACADEMY OF WINTER GARDEN	13337 W COLONIAL DR	34787

Religious Centers (Points)

Facility Name	Address	Zip Code
CHURCH OF CHRIST	1450 DANIELS ROAD	34787
WINTER GARDEN BAPTIST CHURCH	943 W STORY ROAD	34787
NEW INSPIRATION MISSIONARY	617 S LAKEVIEW AVENUE	34787
CHURCH OF GOD OF PROPHECY	855 S DILLARD STREET	34787
CONTRACT CONNECTION	1446 EAST SPRING RIDGE CIRCLE	34787
OASIS COMMUNITY CHURCH	607 AVALON ROAD	34787
FIRST UNITED METHODIST CHURCH	125 NORTH LAKEVIEW AVENUE	34787
NORTH ORLANDO SEVENTH DAY	1114 E PLANT STREET	34787
BAY STREET CHURCH OF GOD	1301 E BAY STREET	34787
RESURRECTION CATHOLIC CHURCH	1211 WINTER GARDEN VINELAND RD	34787
WINTER GARDEN FIRST BAPTIST CHURCH	125 E PLANT ST	34787
9TH ST CHURCH OF CHRIST	115 9TH STREET	34787
BANANA BAY BAPTIST CHURCH	1333 E CROWN POINT ROAD	34761
PEOPLE OF FAITH LUTHERAN CHURCH	228 WINDERMERE ROAD	34787
GARDEN CATHEDRAL CHURCH OF GOD	1001 W PLANT STREET	34787
CORNERSTONE COMMUNITY CHURCH	1550 E CROWN POINT ROAD	34761
FAITH FAMILY COMMUNITY CHURCH OF NAZARENE	12525 WARRIOR ROAD	34787
CHIEF CORNER STONE LOVE OUTRCH	820 S PARK AVENUE	34787
MACEDONIA UNITED FREEWILL BAPT	885 1/2 E BAY STREET	34787
VINELAND ROAD CHRISTIAN FELLOWSHIP	850 VINELAND ROAD	34787
CALVARY BAPTIST CHURCH - CHAPEL	631 SOUTH DILLARD STREET	34787
SAINT PAUL AFRICAN METHODIST EPISCOPAL CHURCH	330 CENTER STREET	34787
TEMPLE FREEWILL BAPTIST CHURCH	1208 E STORY ROAD	34787
BIBLE CHAPEL INC OF WINTER GARDEN	112 TILDENVILLE SCHOOL RD	34787
LIONS & EAGLES INTERNATIONAL FELLOWSHIP INCORPORATED	442 N DILLARD ST	34787
WINTER GARDEN SPANISH SEVENTH-DAY ADVENTIST CHURCH	46 E MILLER ST	34787
CHURCH OF THE MESSIAH	260 N WOODLAND STREET	34787
BETHLEHEM MISSIONARY BAPTIST	67 NORTH STREET	34787
WEST ORLANDO BAPTIST CHURCH	1006 E CROWN POINT ROAD	34761

Social Services (Geocoded)		
Facility Name	Address	Zip Code
BETHANY CHRISTIAN SERVICES	29 W SMITH ST	34787
US Census Places Facility Name		
Winter Garden		
Oakland		
Horizon West		
Lake Butler		
Ocoee		
Tildenville		

Veteran Organizations and Facilities (Points)

Facility Name	Address	Zip Code
AMERICAN LEGION POST 63	271 W PLANT STREET	34787

PROJECT ADVISORY GROUP MAILING LIST

Project Advisory Group (PAG)

Agency				
First Name	Last Name	Title/Position	E-mail	
Boyd Development Corpo	ration			
7586 W Sand Lake Road				
Orlando, FL 32819	- ··			
Dennis	Seliga	Development Manager	desliga@boyddev.com	
Central Florida Regional P	lanning Council (CFRPC)			
555 E. Church Street				
Bartow, FL 33830				
Patricia	Steed	Executive Director	psteed@cfrpc.org	
	Codo-Salisbury, MPA,	Deputy Director/Planning & Administrative		
Jennifer	AICP	Director	jcodosalisbury@cfrpc.org	
CEMEX				
1501 Belvedere Road				
West Palm Beach, FL 3340	6			
Rafaele	Jimenez	Director of Land Resources	rafaele.jimenez@cemex.com	
City of Clermont				
685 W. Montrose Street				
Clermont, FL 34711				
Terry	Dykehouse	City Engineer	tdykehouse@clermontfl.org	
Stoney	Brunson	Public Works Director	<u>sbrunson@clermontfl.org</u>	
Cuqui	Whitehead	Chair, Planning & Zoning Board	cwhitehead@cermontfl.org	
Shannon	Schmidt	Acting Development Services Director	sschmidt@clermontfl.org	
City of Orlando - Public W	orks			
400 S. Orange Avenue				
Orlando, FL 32802				
David	Bass	Water Reclamation Division Manager	david.bass@cityoforlando.net	
City of Winter Garden				
300 W. Plant Street				
Winter Garden, FL 34787				
		Community Development Director, Planning &		
Steve	Pash	Zoning Division	<u>spash@cwgdn.com</u>	
Tanja	Gerhartz	Economic Development Dir.	tgerhartz@wintergarden-fl.gov	
East Central Florida Regio	East Central Florida Regional Planning Council (ECFRPC)			

455 N. Garland Avenue, Fourth Floor

Orlando, FL 32801			
Hugh	Harling	Executive Director	hharling@ecfrpc.org
Fred	Milch	Project Review Coordinator	fmilch@ecfrpc.org

Florida Department of Transportation - District 5

719 S. Woodland Blvd.

DeLand, FL 32720

Mike Shannon Secretary mike.shannon@dot.state.fl.us
Florida Association of Homebuilders
2600 Centennial Place
Tallahassee, FL 23208

Rusty	Payton	CEO/Chief Lobbyist	rpayton@fhba.com
Greater Orlando Builders A 1953 Clayton Heritage Way Maitland, FL 32751	Association /		
James	Penny	Chair, Developers Council	
Steve	Johnson	Chair, Joint Building Committee	
Lee	Steinhauer	Staff Liaison	lee@greaterorlandoBA.com
Jim Karr			
Jim	Karr		landminus@aol.com
Lake-Sumter MPO 225 W. Guava Street, Suite Lady Lake, FL 32159	211		
1 ,		Interim Executive Director / Multi-modal Project	
Michael	Woods	Manager	<u>mwoods@lakesumtermpo.com</u>
Lake County Engineering 350 N Sinclair Avenue Tavares, FL 32778			
Fred	Schneider	County Engineer	fschneider@lakecountyfl.gov
William	White	Engineer IV	wwhite@lakecountyfl.gov
George	Gadiel	Traffic Engineer IV	ggadiel@lakecountyfl.gov
Lake County Office of Plan 315 W Main Street, 5th Flo Tavares, FL 32778	ning & Zoning or		
Tim	McClendon	Planning & Zoning Manager	tmcclendon@lakecountyfl.gov
Steve	Greene	Chief Planner	sgreene@lakecountyfl.gov
Lake County Schools 201 W Burleigh Boulevard Tavares, FL 32778			
Harry	Fix	Director of Growth Planning	fixh@lake.k12.fl.us
MetroPlan Orlando			
250 S. Orange Avenue, Suit Orlanodo, FL 32801	e 200		
Harold	Barley	Executive Director	hbarley@meteroplanorlando.org
Virginia	Whittington	Director of Regional Partnerships	vlwhittington@metroplanorlando.org
Orlando Economic Partner 301 E. Pine St., Ste. 900	ship		

Orlando, FL 32801

Exec. VP, Orlando Regional Chamber

407-563-9969

Orange County National Golf Center and Lodge 16301 Phil Ritson Way Winter Graden, FL 34787

407-656-2626

Orange County Public Wo	rks Department		
4200 S John Young Parkwa	ау		
Orlando, FL 32839			
Mark	Massaro	Director	mark.massaro@ocfl.net

Orange County Community, Environmental and Development Services Department Transportation Planning Division 4200 S John Young Parkway Orlando, FL 32839				
Renzo	Nastasi	Manager	renzo.nastasi@ocfl.net	
Orange County - Planning P. O. Box 1393 Orlando. FL 32802	Division			
Eric Alissa	Ushkowitz Torres, PHD, AICP	Economic Development Administrator Chief Planner	<u>eric.ushkowitz@ocfl.net</u> alissa.torres@ocfl.net	
Orange County Schools Tra	ansportation			
Bill Barbara	Wen Jenkins	Director, School Transportation Superintendent	william.wen@ocps.net barbara.jenkins@ocps.net	
Orange County Parks and I 4801 W. Colonial Drive Orlando, FL 32808	Recreation			
Regina	Ramos	Program Manager	<u>regina.ramos@ocfl.net</u>	
Orange County Utilities 9150 Curry Ford Road Orlando, FL 32825				
Jose Hernandez Mark	Piazza Ikeler		Jose.Hernandez2@ocfl.net MarkC.Ikeler@ocfl.net	
Orlando Health Hospital				
David	Strong	President/CEO	321-841-5299	
South Lake Chamber of Co	mmerce			
David	Colby	President	davidc@southlakechamber-fl.com	
Valencia College P. O. Box 3028 Orlando, FL 32802				
Mr. Loren	Bender	VP, Business Operations & Finance	lbender2@valenciacollege.edu	
Walt Disney World Imagin 1365 Avenue of the Stars Orlando, FL 32836	eering (WDI)			
Stephanie Todd Jim	Murray Rimmer Yawn, CEP, LEED AP	Master Planner Regional Master Planning Executive Master Planning Principal	stephanie.n.murray@disney.com todd.rimmer@disney.com jim.yawn@disney.com	

Water Conserv II Operators				
Scott	Ruland	with Woodard & Curran	scott.ruland@waterconservii.com	
Douglas	Pickell	with WSP	douglas.pickell@wsp.com	
West Orange Chamber of Commerce				
12184 W. Colonial Drive				
Winter Garden, FL 34787				
Stina	D'Uva	President/CEO	sduva@wochamber.com	
West Orange South Lake Transportation Economic Development Task Force				
Scott	Boyd	former Commissioner	scottboyd.orange@gmail.com	

ENVIRONMENTAL ADVISORY GROUP MAILING LIST

May 16, 2018

Environmental Advisory Group (EAG)

Agency			
First Name	Last Name	Title/Position	E-mail
1000 Friends of Florida			
P. O. BOX 3948 Tallahassee FL 32314-5984			
Thomas	Hawkins	Policy & Planning Director	friends@1000fof.org
			<u> </u>
Audubon Society - Central Florida			
1101 Audubon Way			
Maitland, FL 32751			
Charles	Lee	Director of Advocacy	Chlee2@earthlink.net
Audubon Society - Orange County			
1920 North Forest Avenue			
Orlando, FL 32803-1537			
Rick	Baird		
			<u>sabalpress@mac.com;</u>
			watermediaservices@icloud.com;
			watermediaservices@mac.com;
Deborah	Green	President	watermediaservices@me.com
City of Clermont			
J. Dennis	Westrick	Environmental Services Dir	iwestrick@clermontfl.org
Conservation Trust for Florida			
1731 NW 6th Street, Suite D			
Gainesville, FL 32609			
Traci	Dean, Esq.	Executive Director	traci@conserveflorida.org
Defenders of Wildlife - Florida			
433 Central Avenue - Ste 200			
St. Petersburg, FL 33701			
Laurie Ann	MacDonald	Florida Director	laurie.macdonald@defenders.org
Environment Florida			
3110 1st Avenue, Ste 2000			
Orlando, FL 32809			
Jennifer	Rubiello	State Director	
Federal Highway Administration (FHWA) - Flo	rida Division		
400 W. Washington Street - Suite 4200			
Orlando. FL 32801			
Joseph	Sullivan	Environmental Specialist	Joseph.Sullivan@dot.gov
Nahir	DeTizio	Civil Engineer	nahir.detizio@dot.gov
		<u> </u>	
Florida Citizens for Science			
Pete	Dunkleberg	Board Member	netedunkni@gmail.com
	DUINCOCIS		percountpresentation

FL Dept of Agriculture - Florida Forest Service,	Lake County		
Withlacoochee Forestry Center			Leesburg Forestry Station
15019 Broad Street			9610 County Rd 44
Brooksville, FL 34601			Leesburg, FL 34788
Keith	Mousel	Manager, Brooksville	Keith.Mousel@FreshFromFlorida.com
Roy	Cribb	Forest Area Supervisor, Leesburg	Roy.CribbJr@freshfromflorida.com
FL Dept of Agriculture - Florida Forest Service,	Orange County		
8431 S Orange Blossom Trail			
Orlando, FL 32809	100.1.1		
Wil	Kitchings	Forest Area Supervisor	Wil.Kitchings@FreshFromFlorida.com
Sean	Gallagher	Manager	Sean.Gailagner@FreshFromFlorida.com
FL Dept of Environmental Protection			
3900 Commonwealth Blvd. Tallahassee, FL 32399			
Linda	Reeves	Operations Manager	linda.reeves@dep.state.fl.us
Kacee	Johnson	Attorney	kacee.l.johnson@dep.state.fl.us
FL Dept of State - Div of Historical Resources			
RA Gray Building			
500 S. Bronough Street			
Tallahassee, FL 32399-0250			
Ginny	Jones	Architectural Historian	ginny.jones@dos.myflorida.com
Timothy	Parsons	Preservation Officer	timothy parsons@dos myflorida.com
Thiothy	1 01 30113		timothy.parsons@dos.mynohda.com
Florida Department of Transportation			
District 5			
719 S. Woodland Blvd.			
DeLand, FL 32720			
Bill	Walsh	Environmental Manager	william.walsh@dot.state.fl.us
		Environmental Permit	
Casey	Lyon	Coordinator	<u>casey.lyon@dot.state.fl.us</u>
Florida Department of Transportation			
Office of Environmental Management			
605 Suwannee Street			
Tallahassee, FL 32399			
		State Environmental Process	
Katasha	Cornwell	Administrator	katasha.cornwell@dot.state.fl.us
Florida Fish and Wildlife Conservation Commis	ssion		
Farris Bryant Building			
620 S. Meridian Street			
Tallahassee, FL 32399-1600			
Brian	Barnett	Transportation Biologist	brian.barnett@myfwc.com
Scott	Sanders	Director	scott.sanders@myfwc.com
Laura	DiGruttolo	Biological Scientist	laura.digruttolo@myfwc.com
Jason	Hight	Biological Administrator	jason.hight@myfwc.com
Richard	Mospens	Conservation Land Manager	richard.mospens@myfwc.com
Tom	Shupe	Biologist	tom.shupe@myfwc.com
David	Turner		david.turner@myfwc.com

Florida Greenways & Trails Foundation P. O. Box 4142 Tallahassee, FL 32315			
Dale	Allen	President	wm.dale.allen@gmail.com
Florida Trail Association 5415 SW 13th Street Gainesville, FL 32608			
Janet Alex	Akerson Stigliano	Administrative Director FL Trail Program Director	janetakerson@floridatrail.org alex@floridatrail.org
Lake County - Environmental Services Dept. 315 W. Main Street, #411 Tavares, FL 32778			
Mary Fred	Hamilton Schnieder, PE	Environmental Services Manager County Engineer	mhamilton@lakecountyfl.gov fschneider@lakecountyfl.gov
Lake County Water Authority 27351 SR 19 Taveres, FL 32778			
Doug	Bryant	Chairman - District 4	
Lake Region Audubon Society 115 Lameraux Winter Haven, FL 33884			
Reinier	Munguia	President	president@lakeregionaudubon.org
The Nature Conservancy Florida Field Office 2500 Maitland Center Pkwy. Suite 311 Maitland, FL 32751			
Patricia (Tricia)	Martin		tricia_martin@tnc.org
Orange County Environmental Protection Division Mercy Drive, Suite 4 Orlando, FL 32808	sion		
		Deputy Director, Community, Environmental & Development Services	
Beth	Jackson	Program Manager Environmental Program	beth.jackson@ocfl.net
Neal	Thomas	Supervisor	neal.thomas@ocfl.net
Reedy Creek Improvement District (RCID) P. O. Box 10170 Lake Buena Vista, FL 32830			
Mike Jeff Lee John	Crikis Holland Pulham Classe	Assistant City Manager Biologist Senior Planner District Administrator	mcrikis@rcid.org jholland@rcid.org lpulham@rcid.org wsiskron@rcid.org
Ridge Rangers 1630 Royce Ranch Avenue Lake Placid, FL 33852			

Bill	Parkins	Coordinator	ridgerangers@myfwc.com
Sierra Club of Florida Florida Regional Office 1990 Central Avenue St. Petersburg, FL 33712			
Marjorie	Holt	Vice Chairperson Conservation	marjorieholt@earthlink.net
John	Puhek	Transportation Chair	flsquirrel@aol.com
South Florida Water Management District Orlando Service Center 1707 Orlando Central Pkwy., Suite 200 Orlando, FL 32809			
William Marc	Graf Ady	Regional Representative	wgraf@sfwmd.gov mady@sfwmd.gov
St Johns River Water Management District 601 S. Lake Destiny Road, Suite 200 Maitland, FL 32751			
Bill	Adams	Hydrologist IV	wadams@sjrwmd.com
Alyssa	Alers	Regulatory Scientist I	aalers@sjrwmd.com
James	Hollingsnead	Supervising Hydrologist Environmental Resource Progam	jnollingsnead@sjrwmd.com
Cammie	Dewey	Manager	cmccammon@sjrwmd.com
The Friends of Lake Louisa State Park 7305 U.S. Hwy. 27 Clermont, FL 34714			
Scott	Spaulding	Park Manager	scott.spaulding@dep.state.fl.us
Christy	Conk	President	Have to submit email via online form
Tom	Ballesteros	vice President	have to submit email via online form
US Army Corps of Engineers Jacksonville District P. O. Box 4970 Jacksonville, FL 32232-0019			
Andrew	Philips		andrew.w.philips@usace.army.mil
Jeffrey	Collins	Project Manager	jeffrey.s.collins@usace.army.mil
Randy	lurner	Project Manager	randy.l.turner@usace.army.mil
US Fish and Wildlife Service (USFWS) North Florida Ecological Services Field Office 7915 Baymeadows Way, Suite 200 Jacksonville, FL 32256-7517			
John	Wrublik		John.Wrublik@fws.gov
Zakia	Williams		zakia williams@fws.gov
US Environmental Protection Agency - Region San Nunn Atlanta Federal Center 61 Forsyth Street SW Atlanta, GA 30303-8960	4		
Water Conserv II			

17498 McKinney Road Winter Garden, FL 34787 David

Mahnken

Consultant, Esciences

dmahnken@esciencesinc.com

MEETING FACILITIES EVALUATION

Public Meeting Facility Criteria

Project Name:	Lake / Orange County Connector Feasibility / PD&E Study
CFX Project Number:	599-225
Facility Name:	Marriott Springhill Suites at Flamingo Crossings – Citrus Meeting Room
Facility Address:	13279 Flamingo Crossings Boulevard, Winter Garden, FL 34787
Facility Website:	http://www.marriott.com/hotels/travel/mcofm-springhill-suites-orlando-at-
	flamingo-crossings-western-entrance/
Contact Information:	Tara Kinney
Date of Visit:	April 3, 2018

Facility Information	Comments	
Capacity/Layout		
Large combined room (A&B)	40 Conference Style, 165 Theater Style	
Individual rooms	20 – 35 Conference Style	
Meets ADA requirements	yes	
Sound System:		
Microphone	Available for additional fee	
Speakers	Available for additional fee	
Podium	Available for additional fee	
Video Equipment:		
Screen	Available for additional fee	
Projector	LCD available for additional fee	
Wi-Fi	Available	
Number of chairs available	As needed up to capacity	
Number of tables available	As needed	
Fees	\$300 ++	
Insurance		
Parking	Free	
Scheduling	407-778-5613 tara.kinney2@marriott.com	

Notes

Marriott Springhill Suites at Flamingo Crossings – Citrus Meeting Room Photos

Public Meeting Facility Criteria

Project Name:	Lake / Orange County Connector Feasibility / PD&E Study
CFX Project Number:	599-225
Facility Name:	Marriott TownePlace Suites at Flamingo Crossings – Grove Meeting Room
Facility Address:	13295 Flamingo Crossings Boulevard, Winter Garden, FL 34787
Facility Website:	http://www.marriott.com/hotels/travel/mcocr-towneplace-suites-orlando-at-
	flamingo-crossings-western-entrance/
Contact Information:	Tara Kinney
Date of Visit:	April 3, 2018

Facility Information	Comments	
Capacity/Layout		
Large combined room (A & B)	40 Conference, 165 Theater Style	
Individual rooms	20 – 35 Conference	
Meets ADA requirements	yes	
Sound System:		
Microphone	Available for additional fee	
Speakers	Available for additional fee	
Podium	Available for additional fee	
Video Equipment:		
Screen	Available for additional fee	
Projector	LCD available for additional fee	
Wi-Fi	Available	
Number of chairs available	As needed up to capacity	
Number of tables available	As needed	
Fees	\$300 ++	
Insurance		
Parking	Free	
Scheduling	407-778-5613 tara.kinney2@marriott.com	

Notes

Marriott TownePlace Suites at Flamingo Crossings – Grove Meeting Room Photos

Public Involvement Program Lake / Orange County Connector (US 27 to SR 429) Feasibility / PD&E Study

Public & Coordination Meetings Held

Summary of Meetings Held

Meeting	Date	Location
CEMEX WGI Kick-off	4/3/2018	GoTo Meeting
Orange County Kick-off	4/20/2018	Orange County Public Works, 4200 S John Young Pkwy, Orlando, FL
Lake Orange County Kick-off	4/20/2017	Lake County Public Works, 350 N Sinclair, Taveres, FL
Water Conserv II Kick-off	5/7/2018	Water Conserv II, 17498 McKinney Rd, Winter Garden, FL
CR 455 Extension Coordination Kick-off	6/14/2018	CFX HQ, 4974 Orl Tower Rd, Orlando, FL
Environmental Advisory Group Meeting 1	6/30/2018	CFX Board Room, 4974 ORL Tower Road, Orlando, FL
Project Advisory Group Meeting 1	6/30/2018	CFX Board Room, 4974 ORL Tower Road, Orlando, FL
Commissioner VanderLey Coordination	7/2/2018	Orange County Admin Building, 201 S Rosalind Ave, Orlando, FL
MPO TAC Meeting	8/8/2018	225 W Guava St, STE 207, Lady Lake, FL
MPO Board	8/22/2018	225 W Guava St, STE 207, Lady Lake, FL
FDOT District 5	8/24/2018	FDOT District 5 Live Oak Conference Room
Public Informational Meeting 1	8/30/2018	Clermonts Arts & Recreational Center Gymnasium, 3700 S Hwy 27, Clermont FL
Greater Orlando Builders Association	9/10/2018	1953 Clayton Heritage Way, Maitland, FL
Lake County Coordination	10/15/2018	Lake County Public Works, 350 N Sinclair, Taveres, FL
Lake County ELA	1/24/2019	Lake County Public Works, 350 N Sinclair, Taveres, FL
SFWMD ELA	1/24/2019	1701 Orlando Central Parkway, Suite 200, Orlando, FL
West Orange Chamber of Commerce	2/4/2019	12184 W Colonial Dr, Winter Garden, FL
Environmental Advisory Group Meeting 2	2/12/2019	CFX Board Room, 4974 ORL Tower Road, Orlando, FL
Project Advisory Group Meeting 2	2/12/2019	CFX Board Room, 4974 ORL Tower Road, Orlando, FL
Lake Sumter MPO	2/12/2019	1616 S 14 St, Leesburge, FL 34748
MetroPlan TAC	2/22/2019	250 S Orange Ave, STE 200, Orlando, FL
Commissioner VanderLey Coordination	2/25/2019	Orange County Admin Building, 201 S Rosalind Ave, Orlando, FL
FDOT District 5	2/26/2019	FDOT District 5 Live Oak Conference Room
Lake Sumter MPO Board	2/27/2019	1616 S 14 St, Leesburge, FL 34748
MetroPlan CAC	2/27/2019	250 S Orange Ave, STE 200, Orlando, FL
Karl Corporation	2/28/2019	CFX Office - Sandpiper Conference Room
MetroPlan MAC	3/7/2019	250 S Orange Ave, STE 200, Orlando, FL
Public Informational Meeting 2	3/7/2019	Bridgewater Middle School Cafeteria, 5600 Tiny Road, Winter Garden, FL
MetroPlan Board	3/13/2019	250 S Orange Ave, STE 200, Orlando, FL
Clermont City Council	4/9/2019	685 W Montrose St, Clermont FL 34711
Orange County ELA	4/25/2019	Orange County Public Works, 4200 S John Young Pkwy, Orlando, FL
Environmental Advisory Group Meeting 3	5/2/2019	CFX Board Room, 4974 ORL Tower Road, Orlando, FL
Project Advisory Group Meeting 3	5/2/2019	CFX Board Room, 4974 ORL Tower Road, Orlando, FL
Public Hearing (to be held)	6/27/2019	Clermonts Arts & Recreational Center Gymnasium & Black Box Theater, 3700 S Hwy 27, Clermont
	(scheduled)	FL

Environmental Advisory Group Meeting 1

July 9, 2018

Subject: Environmental Advisory Group Meeting No. 1 – July 30, 2018 CFX Feasibility & Project Development and Environment Study Lake / Orange County Connector (US 27 to SR 429) CFX Project No.: 599-225

Dear Study Stakeholder:

The <u>Central Florida Expressway Authority</u> (CFX) would like to invite you or your designee to the first Environmental Advisory Group (EAG) meeting for the <u>Lake / Orange County Connector</u> study. The meeting will be held on Monday, July 30, 2018 from 1:30 p.m. to 3:30 p.m. at the CFX Headquarters located at 4974 ORL Tower Rd., Orlando. A brief presentation will be provided, followed by group discussion.

Using the results of previous studies as a foundation, a feasible corridor for the proposed toll road will be identified. Several alignments within the corridor will then be developed and evaluated to identify a preferred alternative. All factors related to the conceptual design and location of the facility will be considered including transportation needs, financial feasibility, social impacts, economic factors, environmental impacts, engineering analysis, and right-of-way requirements. If the project is subsequently approved, it would move into design for eventual construction.

The overall goals of the Lake/Orange County Connector are to provide improved system connectivity / linkage; accommodate anticipated transportation demand; provide consistency with local and regional plans; support economic viability and job creation; support intermodal opportunities; and enhance evacuation and emergency services. A project location map is attached for your information.

Your participation in the EAG is encouraged. As a special advisory resource to CFX and the consultant team, the EAG will provide input regarding local needs, concerns and potential physical, natural, social and cultural impacts that will be crucial in the evaluation of corridor and alternative alignments.

For more information, click <u>here</u> to visit the study's website. Please respond to Kathy Putnam, Public Involvement Coordinator, by Monday, July 16th if you are able to attend the EAG meeting or if you would prefer to designate a representative. Ms. Putnam can be reached by phone at 407-802-3210 or by email at <u>LakeOrangeStudy@CFXway.com</u>.

Sincerely,

Joseph A Berenis

Joseph A. Berenis, PE Chief of Infrastructure Central Florida Expressway Authority

Attachment: Project Location Map

LAKE / ORANGE COUNTY CONNECTOR (US 27 TO SR 429) ENVIRONMENTAL ADVISORY GROUP (EAG) MEETING #1 SUMMARY

Date/Time: Monday, July 30, 2018; 1:30 p.m. – 3:00 p.m.

Location: Central Florida Expressway Authority (CFX), 4974 ORL Tower Road, Orlando, FL 32807, Board Room

Attendees:Ten EAG members and eight staff members attended. Six EAG members participated via
GoToMeeting. See sign-in sheets attached.

I. Notifications

Invitation letters were emailed to 61 members of the EAG on July 9, 2018.

II. Welcome

Nicole Gough of Dewberry, CFX's General Engineering Consultant (GEC), called the meeting to order at 1:34 p.m. and welcomed everyone. She gave a brief introduction about the meeting and provided safety, housekeeping and Title VI information. She also mentioned that the meeting was being recorded and there were members participating via GoToMeeting. Attendees introduced themselves and the organizations they represented.

III. Presentation

Will Sloup, Consultant Project Manager with Metric Engineering, presented the following information:

Environmental Advisory Group Meeting #1 July 30, 2018

• Study Objective

The Lake/Orange County Connector PD&E study will determine if a limited access facility between US 27 in south Lake County and SR 429 in west Orange County is viable and fundable in accordance with CFX policies and procedures. New interchanges are proposed at US 27 and the future extension of CR 455 in Lake County. The existing Schofield Road interchange with SR 429 in Orange County will remain but be modified to accommodate free-flow traffic movements between SR 429 and the proposed Lake/Orange County Connector.

• Study Area

At the present time, the study area is generally undeveloped. The study area lies within Lake County and Orange County and the limits are generally described as: Porter Road on the north; SR 429 on the east; Old YMCA Road on the south; and US 27 on the west. (Presented on the slide was a map of the study area which was also available in the room as a 40" x 64" display board.)

• Future Land Use

The study area falls within the Wellness Way Area Plan and the Horizon West Special Planning Area.

The Wellness Way Area Plan has been recognized for many years as an area that has significant potential for economic development in southeast Lake County. It's comprised of approximately 15,471 acres in southeast Lake County. The anticipated build out of 16,531 units will generate over 26,839 jobs.

Horizon West is a fast-growing, master-planned community in southwest Orange County. This is highlighted by the fact that Horizon West's share of all approved single-family building permits within Orange County has steadily increased since 2002 and comprised more than 50% of issued permits in 2015. The study area falls within the Town Center and Village H (Hickory Nut) of Horizon West. The Town Center will be a regional employment center with a projected employment force of over 27,000.

• Project Needs

The need for a transportation project arises from deficiencies, issues or concerns that currently exist or are expected to occur within the study area. In short, the need establishes the rationale for pursuing a project. There are six project needs that serve as justification for the proposed Lake / Orange County Connector:

- 1. Improve connections between area roads.
- 2. Accommodate future transportation demand.
- 3. Provide consistency with local and regional plans.
- 4. Support economic viability and job creation.
- 5. Support intermodal opportunities.
- 6. Enhance evacuation and emergency services.

• CFX Project Development Process

CFX follows a project development and environment, or PD&E, process for new alignment expansion projects. At the conclusion of the PD&E study one of two things can occur - the proposed project can either move forward into the final design phase or be placed on hold to be revisited in the future.

• Current Phase – PD&E Study

Simply stated, the PD&E Study will determine if there is an engineering and environmentally feasible alternative to meet the project needs. Using the results of previous studies as a foundation, a feasible corridor for the proposed toll road will be identified. Several alignments within the corridor will then be developed and evaluated to identify a preferred alternative. The PD&E study and Final Design phases are funded in CFX's Five-Year Work Plan. Design funds are indicated as placeholder in fiscal years 2021/22 and 2022/23 until the CFX Governing Board approves the results of this PD&E Study.

• Project History – Identify Project

The Lake / Orange County Connector is identified in the 2040 Master Plan and was also identified in previous Master Plans (2025, 2030 and 2035) as the "Wellness Way Corridor". It is also identified in Lake County and Orange County Long Range Transportation Plans.

• Project History – Feasibility Study

In 2002, CFX studied the feasibility of a limited access toll road to connect US 27 on the west with Florida's Turnpike and the then newly constructed SR 429. Based on the concepts that

were developed, the study concluded that only the Southern Corridor offered any long-term opportunity for CFX participation. The Southern Corridor was in the general area of Schofield Road.

Again in 2007, CFX studied the feasibility and viability of a potential US 27 to SR 429 expressway connection within an area south of Hartwood Marsh Road and north of US 192. The study identified Corridors A, C and D as the three overall viable corridors. In the end Corridor C, which paralleled Schofield Road, was not recommended due to potential impacts to the planned Horizon West Town Center at the eastern terminus.

In 2017, CFX completed a preliminary traffic and revenue analysis of three alignments. The "Southern Alignment", located in the general area of Schofield Road, was found to provide the greatest potential for revenue generation and a recommendation was made to move forward with a Feasibility/PD&E Study.

• Schedule

The study began in May 2018 with a 15-month schedule. In August we will be finalizing corridor analysis, the analysis that will help identify the most feasible corridors. We will then proceed to alternatives analysis which will help identify a preferred alternative. Three PAG/EAG meetings will be held throughout the course of the study. Today we are discussing corridors, the next time we meet will discuss several alternative alignments, and the final time we meet we will focus on the preferred alternative.

• Corridor Analysis – Social Constraints Map

We have separated the study area into three segments and have developed several 800' wide corridors. This resulted in a total of 16 corridor segments that we are able to evaluate in different combinations to create a direct link between US 27 and SR 429. These corridors were then mapped against known constraints. (Presented on the slide was the Social Constraints Map which was also available in the room as a 40" x 64" display board.)

Corridor Analysis – Environmental Constraints Map

(Presented on the slide was the Environmental Constraints Map which was also available in the room as a $40^{\circ} \times 64^{\circ}$ display board.)